Team:ETH Zurich/modeling/reactions

From 2014.igem.org

(Difference between revisions)
Line 2: Line 2:
<html>
<html>
-
<span class="equation">\displaystyle c = \pm\sqrt{a^2 + b^2}</span >
+
$$c = \pm\sqrt{a^2 + b^2}$$
-
<div class="equation"> \displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }</div>
+
$$\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }$$
-
<div class="equation"> \displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) </div>
+
$$\displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)$$
-
<div class="equation">f(x) = \int_{-\infty}^\infty
+
$$f(x) = \int_{-\infty}^\infty
     \hat f(\xi)\,e^{2 \pi i \xi x}
     \hat f(\xi)\,e^{2 \pi i \xi x}
     \,d\xi
     \,d\xi
-
</div>
+
$$
-
 
+
-
 
+
-
<script type="text/javascript">
+
-
 
+
-
$(document).ready(function(){
+
-
 
+
-
    $(".equation").each(function(){
+
-
katex.render($(this).text(), this);
+
-
    });
+
-
});
+
-
</script>
+
</html>
</html>
{{:Team:ETH Zurich/tpl/foot}}
{{:Team:ETH Zurich/tpl/foot}}

Revision as of 19:53, 18 September 2014

iGEM ETH Zurich 2014