Team:ETH Zurich/modeling/reactions

From 2014.igem.org

(Difference between revisions)
Line 3: Line 3:
<html>
<html>
<span class="equation">c = \pm\sqrt{a^2 + b^2}</span >
<span class="equation">c = \pm\sqrt{a^2 + b^2}</span >
-
<div class="equation" \displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }</div>
+
<div class="equation"> \displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }</div>
-
<div class="equation" \displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) </div>
+
<div class="equation"> \displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) </div>
</div>
</div>

Revision as of 07:39, 18 September 2014

iGEM ETH Zurich 2014