Team:Bielefeld-CeBiTec/Results/Pathway
From 2014.igem.org
Line 111: | Line 111: | ||
<h6>Cultivation</h6> | <h6>Cultivation</h6> | ||
<p> | <p> | ||
- | To proof the isobutanol production of our cultures carrying <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1465306"target="_blank">BBa_ K1465306</a> and <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1465307"target="_blank">BBa_ K1465307</a> we performed two cultivations. <br>First we made a calibration curve, so we can quantify the production. For this, we prepared samples with the concentrations 0.001%, 0.01%, 0.05%, 0.1% and 0.5% of isobutanol in <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Notebook/Media#LBmedium_blank"target="_blank">LB medium</a> and treated them as described in the <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Notebook/Protocols#GC | + | To proof the isobutanol production of our cultures carrying <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1465306"target="_blank">BBa_ K1465306</a> and <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1465307"target="_blank">BBa_ K1465307</a> we performed two cultivations. <br>First we made a calibration curve, so we can quantify the production. For this, we prepared samples with the concentrations 0.001%, 0.01%, 0.05%, 0.1% and 0.5% of isobutanol in <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Notebook/Media#LBmedium_blank"target="_blank">LB medium</a> and treated them as described in the <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Notebook/Protocols#GC-MS" target="_blank">protocol</a>. Like shown in <a href="#calibration">Figure 3</a>, the regression curve has the function 1.1058x + 0.0005= y and R<sup>2</sup> is 0.999. With this, we made the upcoming quantifications. The normalized peak area is the peak area of isobutanol divided by the peak area of 2-butanol, which is the internal standard. For the evaluation of the <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Notebook/Protocols#GC-MS" target="_blank">GC-MS data</a> we did not want to calculate with percent but with mg/L. Therefore, we converted the percent values by multiplication with 10 because the samples were diluted 1:10 before the measurement. Multiplication of the resulting value with the density of isobutanol, which is 802kg/m<sup>3</sup> yields in g/l, which can be multiplied again with 1000 to get mg/l. <br>We also made an evaporation experiment to check the recovery rate of isobutonal during our experiments. We performed this experiment at 37°C over 20 hours and found out that about 50% isobutanol disappeared. In this setup we compared flasks we opened ten times and flask we just opened in the end. The amount of the opened flasks was in the error margin of the not opened flask. Hence it can be said, that the isobutanol concentration is not influenced by opening the flasks. |
<center> | <center> | ||
<div class="element" style="margin:10px; padding:10px; width:500px;" id="calibration"> | <div class="element" style="margin:10px; padding:10px; width:500px;" id="calibration"> |
Latest revision as of 10:39, 11 December 2014
Module III - Isobutanol production
Cloning
Coding sequences
We started with the pSB1C3_alsS_ilvC_ilvD_kivD construct which can be found in the parts registry as BBa_K1465302. Therefore we used the CDS of the NCTU team Formosa 2011/2012 BioBricks alsS (BBa_K539627), ilvC (BBa_K539621),
ilvD (BBa_K539626) and kivD (BBa_K539742). We used the parts of the parts distribution to combine them by Gibson Assembly. For this purpose we amplified the various CDS and combined them with the RBS (BBa_B0034) by PCR.
In the beginning it did not work with pSB1C3 so we used pSB1K3.
When we had pSB1K3_alsS_ilvC_ilvD_kivD, we wanted to reclone it in pSB1C3 and combine it with a promoter. We wanted to do this by BioBrick Assembly. While doing this we identified an illegal restriction site in the end of alsS because of the combination with the following RBS. The restriction site was removed by PCR amplification and Gibson assembly with new primer (rv_ilvC_alsS-new, fw_alsS_ilvC-new). In this approach we were able to amplify pSB1C3 as backbone, so no recloning was necessary.
Additionally we wanted to combine our part BBa_K1465302 with the adhA from Lactococcus lactis. This alcoholdehydrogenase was identified as the best described enzyme for the last step in the 2-keto-acid pathway (Atsumi2008, Atsumi2010). This pathway is responsible for the isobutanol production.
We wanted to add the adhA to pSB1C3_alsS_ilvC_ilvD_kivD by BioBrick Assembly, but adhA was not available as a BioBrick. So we decided to design it as a new BioBrick (BBa_K1465301). The approach can be found in the Results section of adhA. We did a BioBrick Sufffix Insertion and the result was the pSB1C3_alsS_ilvC_ilvD_kivD_adhA construct which is the part BBa_K1465303.
Constructs with promoter
To characterize our BioBricks, we wanted to add different promoter to them. We chose the Ptac promoter (BBa_K731500) for characterizations during cultivations and the stronger T7 promoter (BBa_I719005) for SDS pages.
We performed different BioBrick Assemblies, because in the beginning it was not working.
We tried BioBrick Suffix Assembly where the Ptac was cut out of the gel and BioBrick Prefix Assembly where we cut the alsS_ilvC_ilvD_kivD part out of the gel. In the end, the suffix version worked out and we created the BioBrick device pSB1C3_Ptac_alsS_ilvC_ilvD_kivD (BBa_ K1465306)
The same BioBrick Assemblies we performed with the Ptac promoter and the alsS_ilvC_ilvD_kivD_adhA part, and the BioBrick Suffix Assembly worked out again. We created the BioBrick device pSB1C3_Ptac_alsS_ilvC_ilvD_kivD_adhA (BBa_ K1465307)
For the combination with the T7 promoter we were only performing successful BioBrick Suffix Assembly for both constructs.
Expression
For the protein expression analysis of or two created constructs we made a cultivation of E. coli KRX with respectively one of the constructs.
pSB1A2_T7_alsS_ilvC_ilvD_kivD
Samples of E. coli KRX with our construct pSB1A2_T7_alsS_ilvC_ilvD_kivD were taken like explained in the cell lysis for a SDS-PAGE Protocol. Protein expression was induced with rhamnose when the culture reached a OD600 of 0.8. The first sample was taken right before the induction. Additionally we took samples two, four, 21 and 23 hours later. With these samples, we made a SDS Page. Figure 1 shows the picture of this SDS Page.
These observations fit to our expectations of possible results of this experiment, because all proteins seem to be overexpressed.
pSB1A2_T7_alsS_ilvC_ilvD_kivD_adhA
We took samples of E. coli KRX with our construct pSB1A2_T7_alsS_ilvC_ilvD_kivD_adhA like explained in the cell lysis for a SDS-PAGE Protocol. The induction of the protein expression with rhamnose happened when a OD600 of 0.8 was reached. Right before the induction the first sample was taken and additional samples Protein expression was induced with rhamnose when the culture reached a OD600 of 0.8. The samples were taken two, four, 21 and 23 hours later. These samples were used for a SDS Page. In Figure 2 you can find the picture of this SDS Page.
As in the SDS Page of pSB1A2_T7_alsS_ilvC_ilvD_kivD all proteins seem to be overexpressed and present. This experiment measured up to our expectations.
Cultivation
To proof the isobutanol production of our cultures carrying BBa_ K1465306 and BBa_ K1465307 we performed two cultivations.
First we made a calibration curve, so we can quantify the production. For this, we prepared samples with the concentrations 0.001%, 0.01%, 0.05%, 0.1% and 0.5% of isobutanol in LB medium and treated them as described in the protocol. Like shown in Figure 3, the regression curve has the function 1.1058x + 0.0005= y and R2 is 0.999. With this, we made the upcoming quantifications. The normalized peak area is the peak area of isobutanol divided by the peak area of 2-butanol, which is the internal standard. For the evaluation of the GC-MS data we did not want to calculate with percent but with mg/L. Therefore, we converted the percent values by multiplication with 10 because the samples were diluted 1:10 before the measurement. Multiplication of the resulting value with the density of isobutanol, which is 802kg/m3 yields in g/l, which can be multiplied again with 1000 to get mg/l.
We also made an evaporation experiment to check the recovery rate of isobutonal during our experiments. We performed this experiment at 37°C over 20 hours and found out that about 50% isobutanol disappeared. In this setup we compared flasks we opened ten times and flask we just opened in the end. The amount of the opened flasks was in the error margin of the not opened flask. Hence it can be said, that the isobutanol concentration is not influenced by opening the flasks.
For the GC-MS analysis we took samples at the point of induction and then four, seven, ten and 20 hours afterwards.
In Figure 4 you can see the comparison of the OD600 of the analyzed cultures. It is conspicuously, that the induced constructs are growing slower from the point of induction, which indicates that there might be an redirected flux towards the isobutanol synthesis.
The growth of the not induced cultures carrying BBa_K1465306 and BBa_K1465307 were showing a slightly decreased growth than the wildtype, which might be because of the large plasmids.
Differently than expected, the culture carrying BBa_K1465307, which includes the adhA produced less isobutanol than BBa_K1465306. The maximum amount of isobutanol produced by the strain carrying the BBa_K1465306, the BioBrick without the adhA is about 55mg/l and of BBa_K1465307 about 37 mg/l. We were able to show in a SDS Page that all proteins were expressed.
Figure 7: Comparison of the growth curves and the isobutanol production for cultures at 30°C.
BBa_K1465306 is the construct without the adhA and BBa_K1465307 the construct with the adhA. The growth is shown in black and the isobutanol production in blue
Conclusion
We successfully created six new BioBricks of which four are available in the parts registry: BBa_K1465302, BBa_K1465303, BBa_K1465306 and BBa_K1465307. The two other BioBricks are pSB1A2_T7_alsS_ilvC_ilvD_kivD and pSB1A2_T7_alsS_ilvC_ilvD_kivD_adhA.
Further, it could be shown that isobutanol was produced. We could not show, that the production with AdhA taken from L. lactis is higher. The expression of the E. coli own adhE seems to be enough.
References
-
Atsumi S, Wu TY, Eckl EM, Hawkins SD, Buelter T, Liao JC. 2010. Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison three aldehyde reductase/alcohol dehydrogenase genes. In: Appl. Microbiol. Biotechnol 85, 651–657