Team:UC Davis
From 2014.igem.org
Line 39: | Line 39: | ||
<p> | <p> | ||
In a report conducted by the UC Davis Olive Oil Center, it was found that more than 65% of the extra virgin olive oil on shelves around the US is defective due to poor handling or deliberate adulteration with extraneous, non-beneficial oils. The most prevalent and identifying defect in olive oil is rancidity, indicating the absence of expected health benefits such as antioxidants and polyunsaturated fats. This summer, we engineered a biosensor capable of quickly and cheaply evaluating rancidity defects in the chemical profile of olive oil, providing both consumers and retailers with a means of ensuring product quality.<br><br> | In a report conducted by the UC Davis Olive Oil Center, it was found that more than 65% of the extra virgin olive oil on shelves around the US is defective due to poor handling or deliberate adulteration with extraneous, non-beneficial oils. The most prevalent and identifying defect in olive oil is rancidity, indicating the absence of expected health benefits such as antioxidants and polyunsaturated fats. This summer, we engineered a biosensor capable of quickly and cheaply evaluating rancidity defects in the chemical profile of olive oil, providing both consumers and retailers with a means of ensuring product quality.<br><br> | ||
- | <a href="https://static.igem.org/mediawiki/2014/ | + | <a href="https://static.igem.org/mediawiki/2014/a/a9/Gold_Medal_Criteria_Paper-final_ver.pdf" class="brightlink">Read full version of our practice and policy report</a><br> |
</p> | </p> | ||
</div> | </div> |
Revision as of 03:41, 18 October 2014
OliView: An Enzyme Based Electrochemical Biosensor Developed for Olive Oil Quality Control
In a report conducted by the UC Davis Olive Oil Center, it was found that more than 65% of the extra virgin olive oil on shelves around the US is defective due to poor handling or deliberate adulteration with extraneous, non-beneficial oils. The most prevalent and identifying defect in olive oil is rancidity, indicating the absence of expected health benefits such as antioxidants and polyunsaturated fats. This summer, we engineered a biosensor capable of quickly and cheaply evaluating rancidity defects in the chemical profile of olive oil, providing both consumers and retailers with a means of ensuring product quality.
Read full version of our practice and policy report