Team:ETH Zurich/achievements

From 2014.igem.org

(Difference between revisions)
(Modeling)
Line 43: Line 43:
== Modeling ==
== Modeling ==
=== [https://2014.igem.org/Team:ETH_Zurich/modeling/int Integrase theoretical characterization] ===
=== [https://2014.igem.org/Team:ETH_Zurich/modeling/int Integrase theoretical characterization] ===
 +
[[File:ETH_Zurich_Integrases_sites.png|300px|left|link=https://2014.igem.org/Team:ETH_Zurich/modeling/int]]
Based on the data presented in  Bonnet et al.'s publication "Amplifying genetic logic gates"<sup>[[Team:ETH_Zurich/project/references#refEmergence|[9]]]</sup>, we parameterized a detailed model, resulting in predictions for  a significant number of parameters currently not documented in the literature, such as binding affinity of integrases to their sites on the DNA.  
Based on the data presented in  Bonnet et al.'s publication "Amplifying genetic logic gates"<sup>[[Team:ETH_Zurich/project/references#refEmergence|[9]]]</sup>, we parameterized a detailed model, resulting in predictions for  a significant number of parameters currently not documented in the literature, such as binding affinity of integrases to their sites on the DNA.  
-
[[File:ETH_Zurich_Integrases_sites.png|300px|link=https://2014.igem.org/Team:ETH_Zurich/modeling/int]]
 
 +
 +
<br clear="all" />
=== [https://2014.igem.org/Team:ETH_Zurich/modeling/overview Predicting the whole system's behavior with a comprehensive fully derived model] ===
=== [https://2014.igem.org/Team:ETH_Zurich/modeling/overview Predicting the whole system's behavior with a comprehensive fully derived model] ===
We have a thorough model for the whole Mosai''coli'' system based on a detailed study of every module of this system, including quorum sensing, integrases, and diffusion. We derived the formulae from mass action kinetics and state precisely which approximations we do and why we think we are justified to do so. All our steady state simulations and some of our dynamic simulation results fit to experimental data from our own experiments or found in literature.
We have a thorough model for the whole Mosai''coli'' system based on a detailed study of every module of this system, including quorum sensing, integrases, and diffusion. We derived the formulae from mass action kinetics and state precisely which approximations we do and why we think we are justified to do so. All our steady state simulations and some of our dynamic simulation results fit to experimental data from our own experiments or found in literature.

Revision as of 01:36, 18 October 2014

iGEM ETH Zurich 2014