Team:UESTC-China/Project
From 2014.igem.org
(Difference between revisions)
Line 503: | Line 503: | ||
<p style="color:#1b1b1b;">Based on above information, it is important to remove formaldehyde to a safe level. Purification technologies commonly used for indoor air pollution control include adsorption, chemisorption, photo catalytic oxidization, plasma and thermal catalytic oxidization. However, these methodologies still remain a challenge due to either low degradation efficiency or environmental safety (<i>Lu et al., 2012</i>). Therefore, a more efficient and more environmental friendly technology is desired.</p><br/> | <p style="color:#1b1b1b;">Based on above information, it is important to remove formaldehyde to a safe level. Purification technologies commonly used for indoor air pollution control include adsorption, chemisorption, photo catalytic oxidization, plasma and thermal catalytic oxidization. However, these methodologies still remain a challenge due to either low degradation efficiency or environmental safety (<i>Lu et al., 2012</i>). Therefore, a more efficient and more environmental friendly technology is desired.</p><br/> | ||
- | <p style="color:#1b1b1b;">As we all know that various plants can remove formaldehyde from indoor air by means of the uptake and metabolism (<i>Xu et al., 2010</i>). It has been proved that formaldehyde as a central intermediate of photosynthetic carbon dioxide fixation in green plants can be removed by forming HM-GSH and finally turned to water and carbon dioxide (Fig.2A) . FALDH and FDH are the key enzymes for formaldehyde fixation. For the wild-type plants, they have limited capacity to metabolize formaldehyde and it’s hard for them to survive in an environment with high concentration of formaldehyde. At the same time, formaldehyde is also a key intermediate in the metabolism of several one-carbon (C1) compounds in methylotrophic microorganisms. Those microorganisms have a special metabolic pathway named ribulose monophosphate (RuMP) pathway (Fig.2B). 3-hexulose-6-phosphate (HPS) and 6-phospho-3-hexuloisomerase (PHI) are the key enzymes that affect the metabolism of formaldehyde. In the pathway, HPS fixes HCHO and D-ribulose-5-phosphate (Ru5P) to produce D-arabino-3-hexulose 6-phosphate (Hu6P), and 6-phospho-3- hexuloisomerase (PHI), which converts Hu6P to fructose 6-phosphate (F6P). Interestingly, Ru5P and F6P are also included in the Calvin-Benson cycle, so bacterial RuMP pathway and plant Calvin-Benson cycle can be connected if HPS and PHI can be expressed in plants. By this way, the capacity of formaldehyde uptake and metabolism will be greatly enhanced. In addition, the use of green plants to remove toxins from the air is more likely to be accepted by the public. | + | <p style="color:#1b1b1b;">As we all know that various plants can remove formaldehyde from indoor air by means of the uptake and metabolism (<i>Xu et al., 2010</i>). It has been proved that formaldehyde as a central intermediate of photosynthetic carbon dioxide fixation in green plants can be removed by forming HM-GSH and finally turned to water and carbon dioxide (Fig.2A). FALDH and FDH are the key enzymes for formaldehyde fixation. For the wild-type plants, they have limited capacity to metabolize formaldehyde and it’s hard for them to survive in an environment with high concentration of formaldehyde. At the same time, formaldehyde is also a key intermediate in the metabolism of several one-carbon (C1) compounds in methylotrophic microorganisms. Those microorganisms have a special metabolic pathway named ribulose monophosphate (RuMP) pathway (Fig.2B). 3-hexulose-6-phosphate (HPS) and 6-phospho-3-hexuloisomerase (PHI) are the key enzymes that affect the metabolism of formaldehyde. In the pathway, HPS fixes HCHO and D-ribulose-5-phosphate (Ru5P) to produce D-arabino-3-hexulose 6-phosphate (Hu6P), and 6-phospho-3- hexuloisomerase (PHI), which converts Hu6P to fructose 6-phosphate (F6P). Interestingly, Ru5P and F6P are also included in the Calvin-Benson cycle, so bacterial RuMP pathway and plant Calvin-Benson cycle can be connected if HPS and PHI can be expressed in plants. By this way, the capacity of formaldehyde uptake and metabolism will be greatly enhanced. In addition, the use of green plants to remove toxins from the air is more likely to be accepted by the public. |
</p><br/> | </p><br/> | ||
<div align="center"><img style="width:80%;" src="https://static.igem.org/mediawiki/2014/e/ec/Over_fig2.png"/></div> | <div align="center"><img style="width:80%;" src="https://static.igem.org/mediawiki/2014/e/ec/Over_fig2.png"/></div> |
Revision as of 00:20, 18 October 2014