Our first module deals with the construction of an <i>E. coli</i> strain, which is able to accept electrons stimulating its metabolism. We focused on the indirect electron transfer via <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/rMFC/Mediators">mediators</a>, which are reduced at the electrode in a <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/rMFC/ReactorSystem#DesignReactorSystem">electrobiochemical reactor</a> and then reoxidized again inside bacterial cells. The electron transfer system consists of different steps. First the reduced mediator has to cross the outer membrane of the <i>E. coli</i> cell. For that we are going to use the outer membrane porine OprF (<a href="http://parts.igem.org/wiki/index.php/Part:BBa_K1172507">BBa_K1172507</a>) provided by <a href="https://2013.igem.org/Team:Bielefeld-Germany/Project/Porins">iGEM Team Bielefeld-Germany 2013</a>.
+
-
Crossing the periplasmatic space, the mediator adsorbs at the inner membrane of the <i>E. coli</i> cell. Electrons have to be transferred into the cytoplasm, but the mediator should not enter the cell, because regeneration at the electrode is absolutely necessary. <br>
+
-
We are going to modify the metabolic pathway of fumarate by a knockout of the C4 carboxylate antiporter DcuB in <i>E. coli</i> and overexpression of different fumarate reductases. Furthermore the outer membrane porine OprF had to be integrated into the bacterial chromosome to ensure a constitutive expression of OprF and reduce the plasmid overload of bacterial cells.