Team:UESTC-China/Design

From 2014.igem.org

(Difference between revisions)
Line 496: Line 496:
<p style="color:#1b1b1b;">
<p style="color:#1b1b1b;">
<br/>
<br/>
-
The ribulose monophosphate (RuMP) pathway is one of the formaldehyde-fixation pathways found in microorganisms called methylotrophs, which utilize one-carbon compounds as the sole carbon source. The key enzymes of this pathway are 3-hexulose-6-phosphate synthase (HPS), which fixes formaldehyde to D-ribulose-5-phosphate (Ru5P) to produce D-arabino-3-hexulose-6-phosphate (Hu6P), and 6-phospho-3-hexuloisomerase (PHI), which converts Hu6P to fructose 6-phosphate (F6P).The two key enzymes work in chloroplast both.We will use fusion expression to conduct heterologous expression in tobacco <i>( Li-mei Chen et al,2010)</i>.  
+
The ribulose monophosphate (RuMP) pathway is one of the formaldehyde-fixation pathways found in microorganisms called methylotrophs, which utilize one-carbon compounds as the sole carbon source. The key enzymes of this pathway are 3-hexulose-6-phosphate synthase (HPS), which fixes formaldehyde to D-ribulose-5-phosphate (Ru5P) to produce D-arabino-3-hexulose-6-phosphate (Hu6P), and 6-phospho-3-hexuloisomerase (PHI), which converts Hu6P to fructose 6-phosphate (F6P).The two key enzymes work in chloroplast both.We will use fusion expression to conduct heterologous expression in tobacco <i>(Chen et al., 2010)</i>.  
<br/><br/></p>
<br/><br/></p>
<div align="center"><img style="width:50% ;" src="https://static.igem.org/mediawiki/2014/3/3f/Regu1.png" naptha_cursor="text">
<div align="center"><img style="width:50% ;" src="https://static.igem.org/mediawiki/2014/3/3f/Regu1.png" naptha_cursor="text">
Line 515: Line 515:
<div align="center"><img style="width:40% ;" src="https://static.igem.org/mediawiki/2014/a/a7/Faldh.jpg">
<div align="center"><img style="width:40% ;" src="https://static.igem.org/mediawiki/2014/a/a7/Faldh.jpg">
<p style="position:relative; padding:19 5px; font-size:20px; font-family: calibri, arial, helvetica, sans-serif; font-style: calibri; text-align:justify; width:1000px; color:#1b1b1b;">
<p style="position:relative; padding:19 5px; font-size:20px; font-family: calibri, arial, helvetica, sans-serif; font-style: calibri; text-align:justify; width:1000px; color:#1b1b1b;">
-
<strong>Fig.2</strong>  a. <img align="top" src="https://static.igem.org/mediawiki/2014/0/04/C13-nmr.gif"> spectra from leaf extracts of transgenic tobacco plant treated with gaseous <img align="top" src="https://static.igem.org/mediawiki/2014/e/e7/H13CHO.gif"> for 2 h. b. <img align="top" src="https://static.igem.org/mediawiki/2014/0/04/C13-nmr.gif"> spectra from leaf extracts of WT treated with gaseous <img align="top" src="https://static.igem.org/mediawiki/2014/e/e7/H13CHO.gif"> for 2 h. c. The extract from WT plant leaves without <img align="top" src="https://static.igem.org/mediawiki/2014/e/e7/H13CHO.gif"> treatment was used to monitor the background <img align="top" src="https://static.igem.org/mediawiki/2014/0/04/C13-nmr.gif"> signal levels <i>(H Nian et al,2013)</i>.  
+
<strong>Fig.2</strong>  a. <img align="top" src="https://static.igem.org/mediawiki/2014/0/04/C13-nmr.gif"> spectra from leaf extracts of transgenic tobacco plant treated with gaseous <img align="top" src="https://static.igem.org/mediawiki/2014/e/e7/H13CHO.gif"> for 2 h. b. <img align="top" src="https://static.igem.org/mediawiki/2014/0/04/C13-nmr.gif"> spectra from leaf extracts of WT treated with gaseous <img align="top" src="https://static.igem.org/mediawiki/2014/e/e7/H13CHO.gif"> for 2 h. c. The extract from WT plant leaves without <img align="top" src="https://static.igem.org/mediawiki/2014/e/e7/H13CHO.gif"> treatment was used to monitor the background <img align="top" src="https://static.igem.org/mediawiki/2014/0/04/C13-nmr.gif"> signal levels <i>(Nian et al., 2013)</i>.  
<br>
<br>
</p>
</p>
Line 537: Line 537:
<p style="color:#1b1b1b;">
<p style="color:#1b1b1b;">
<br/>
<br/>
-
Stomata are microscopic pores surrounded by two guard cells and play an important role in the uptake of CO2 for photosynthesis. Recent researches revealed that light-induced stomatal opening is mediated by at least three key components: blue light receptor phototropin, plasma membrane H+-ATPase, and plasma membrane inward-rectifying K+ channels. However, Yin Wang, et al (2014) showed that only increasing the amount of H+-ATPase in guard cells had a significant effect on light-induced stomatal opening (Fig. 4). Transgenic Arabidopsis plants by overexpressing H+-ATPase in guard cells exhibited enhanced photosynthesis activity and plant growth. Therefore,in order to strengthen the ability of absorbing formaldehyde, we overexpressed H+-ATPase (AtAHA2) in transgenic tobacco guard cells,resulting in a significant effect on light-induced stomatal opening.
+
Stomata are microscopic pores surrounded by two guard cells and play an important role in the uptake of CO2 for photosynthesis. Recent researches revealed that light-induced stomatal opening is mediated by at least three key components: blue light receptor phototropin, plasma membrane H+-ATPase, and plasma membrane inward-rectifying K+ channels. However, Wang et al (2014) showed that only increasing the amount of H+-ATPase in guard cells had a significant effect on light-induced stomatal opening (Fig. 4). Transgenic Arabidopsis plants by overexpressing H+-ATPase in guard cells exhibited enhanced photosynthesis activity and plant growth. Therefore,in order to strengthen the ability of absorbing formaldehyde, we overexpressed H+-ATPase (AtAHA2) in transgenic tobacco guard cells,resulting in a significant effect on light-induced stomatal opening.
<br/><br/></p>
<br/><br/></p>
<div align="center"><img style="width:40% ;" src="https://static.igem.org/mediawiki/2014/c/c8/Stoma.png">
<div align="center"><img style="width:40% ;" src="https://static.igem.org/mediawiki/2014/c/c8/Stoma.png">
<p style="position:relative; padding:19 5px; font-size:20px; font-family: calibri, arial, helvetica, sans-serif; font-style: calibri; text-align:justify; width:800px; color:#1b1b1b;">
<p style="position:relative; padding:19 5px; font-size:20px; font-family: calibri, arial, helvetica, sans-serif; font-style: calibri; text-align:justify; width:800px; color:#1b1b1b;">
-
<strong>Fig.4</strong>  Typical stomata in the epidermis illuminated with light for 30 min (<i>Yin Wang,et al.2014</i>).
+
<strong>Fig.4</strong>  Typical stomata in the epidermis illuminated with light for 30 min (<i>Wang et al., 2014</i>).
<br>
<br>
</p>
</p>
Line 550: Line 550:
<p style="color:#1b1b1b;">
<p style="color:#1b1b1b;">
<br/>
<br/>
-
In order to promise biology safety, we use male sterility systems which can be used as a biological safety containment to prevent horizontal transgene flow. Pawan Shukla et al (2014) has used a plant pathogen-induced gene, cysteine protease for inducing male sterility. This gene was identified in the wild peanut, <i>Arachis diogoi</i> differentially expressed when it was challenged with the late leaf spot pathogen, <i>Phaeoisariopsis personata</i>. <i>Arachis diogoi</i> cysteine protease (AdCP) was expressed under the strong tapetum-specific promoter (TA29) and tobacco transformants were generated. Morphological and histological analysis of <i>AdCP</i> transgenic plants showed ablated tapetum and complete pollen abortion.
+
In order to promise biology safety, we use male sterility systems which can be used as a biological safety containment to prevent horizontal transgene flow. Shukla et al (2014) has used a plant pathogen-induced gene, cysteine protease for inducing male sterility. This gene was identified in the wild peanut, <i>Arachis diogoi</i> differentially expressed when it was challenged with the late leaf spot pathogen, <i>Phaeoisariopsis personata</i>. <i>Arachis diogoi</i> cysteine protease (AdCP) was expressed under the strong tapetum-specific promoter (TA29) and tobacco transformants were generated. Morphological and histological analysis of <i>AdCP</i> transgenic plants showed ablated tapetum and complete pollen abortion.
<br/><br/></p>
<br/><br/></p>
Line 556: Line 556:
<div align="center"><img style="width:50% ;" src="https://static.igem.org/mediawiki/2014/1/1c/New_fig5.png">
<div align="center"><img style="width:50% ;" src="https://static.igem.org/mediawiki/2014/1/1c/New_fig5.png">
<p style="position:relative; padding:19 5px; font-size:20px; font-family: calibri, arial, helvetica, sans-serif; font-style: calibri; text-align:justify; width:1000px; color:#1b1b1b;">
<p style="position:relative; padding:19 5px; font-size:20px; font-family: calibri, arial, helvetica, sans-serif; font-style: calibri; text-align:justify; width:1000px; color:#1b1b1b;">
-
<strong>Fig.5</strong> Pollen germination of untransformed control plant and sterile transgenic plantsin vitro. Pollen grains were germinated on sucrose-boric acid medium and over 500 pollen grains were observed. a. Untansformed control plant pollen, b. Sterile pollen.Scale bar 25 μm (<i>Pawan Shukla et al 2014</i>).  
+
<strong>Fig.5</strong> Pollen germination of untransformed control plant and sterile transgenic plantsin vitro. Pollen grains were germinated on sucrose-boric acid medium and over 500 pollen grains were observed. a. Untansformed control plant pollen, b. Sterile pollen.Scale bar 25 μm (<i>Shukla et al., 2014</i>).  
<br>
<br>
</p>
</p>
Line 564: Line 564:
<p style="color:#1b1b1b;">
<p style="color:#1b1b1b;">
<br/>
<br/>
-
The production of HPS, PHI, and FDH are located in chloroplast, while the production of <i>FALDH</i> are located in cytoplasm. We used chloroplast transit peptides to locate these productions of genes. So we constructed different vectors with and without transit peptide. We hope to compare the ability of metabolizing formaldehyde of transgenic tobacco between different transgenic lines. We planned to constructed 11 vectors (Fig. 6), including two backbones, six mono-gene expression vectors and three multi-gene expression vectors (Fig. 7). piGEM003, piGEM004 and piGEM005 are individual mono-gene expression vectors with transit peptides, while piGEM006, piGEM006, piGEM008 are individual multi-gene expression vectors without transit peptides. piGEM009 is a multi-gene expression vector without any transit peptides, while piGEM011 is a multi-gene expression vector with three peptides. piGEM010 is a multi-gene expression vector with two transit peptides.
+
The product of <i>HPS</i>, <i>PHI</i>, and <i>FDH</i> are located in chloroplast, while the product of <i>FALDH</i> are located in cytoplasm. We used chloroplast transit peptides to locate these products of genes. So we constructed different vectors with and without transit peptide. We hope to compare the ability of metabolizing formaldehyde of transgenic tobacco between different transgenic lines. We planned to constructed 11 vectors (Fig. 6), including two backbones, six mono-gene expression vectors and three multi-gene expression vectors (Fig. 7). piGEM003, piGEM004 and piGEM005 are individual mono-gene expression vectors with transit peptides, while piGEM006, piGEM006, piGEM008 are individual multi-gene expression vectors without transit peptides. piGEM009 is a multi-gene expression vector without any transit peptides, while piGEM011 is a multi-gene expression vector with three peptides. piGEM010 is a multi-gene expression vector with two transit peptides.
   
   
<br/><br/></p>
<br/><br/></p>

Revision as of 12:44, 17 October 2014

UESTC-China