Team:Bielefeld-CeBiTec/Results/CO2-fixation

From 2014.igem.org

(Difference between revisions)
Line 39: Line 39:
  <div id="text">
  <div id="text">
   <p>
   <p>
-
The particular aim of the second module is to realize the carbon dioxide fiaxtion in <i>E. coli</i>. For this approach all items, like the <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/CO2-fixation/Calvin-Cycle" target="_blank">Sedoheptulose-1,7-Bisphpospahtase</a>, the <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/CO2-fixation/RuBisCO" target="_blank">Ribulose 1,5-bisphosphate carboxylase/oxygenase</a>  (RuBisCO) and the mechanism of <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/CO2-fixation/RuBisCO" target="_blank">carbon dioxide fixation</a> a tested separetly in various approaches. For the optimization of the carbon dioxide fixation under aerobic growth conditions we investigate the anerobic microcompartment from <i>Halothiobacillus neapolitnaus</i>, called the <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/CO2-fixation/Carboxysome" target="_blank">carboxysom</a>.<br>
+
The particular aim of the second module is to realize the carbon dioxide fiaxtion in <i>E. coli</i>. For this approach all items, like the <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/CO2-fixation/Calvin-Cycle" target="_blank">Sedoheptulose-1,7-Bisphosphatase</a>, the <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/CO2-fixation/RuBisCO" target="_blank">Ribulose 1,5-bisphosphate carboxylase/oxygenase</a>  (RuBisCO) and the mechanism of <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/CO2-fixation/RuBisCO" target="_blank">carbon dioxide fixation</a> a tested separetly in various approaches. For the optimization of the carbon dioxide fixation under aerobic growth conditions we investigate the anerobic microcompartment from <i>Halothiobacillus neapolitnaus</i>, called the <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/CO2-fixation/Carboxysome" target="_blank">carboxysom</a>.<br>
<center>
<center>
<div class="element" style="margin:10px; padding:10px; text-align:center; width:450px">  
<div class="element" style="margin:10px; padding:10px; text-align:center; width:450px">  
       <a href="https://static.igem.org/mediawiki/2014/5/54/Bielefeld-CeBiTec_2014-10-11_Carboxy_weiss_wiki.png" target="_blank"><img src="https://static.igem.org/mediawiki/2014/5/54/Bielefeld-CeBiTec_2014-10-11_Carboxy_weiss_wiki.png" width="450px"></a><br>
       <a href="https://static.igem.org/mediawiki/2014/5/54/Bielefeld-CeBiTec_2014-10-11_Carboxy_weiss_wiki.png" target="_blank"><img src="https://static.igem.org/mediawiki/2014/5/54/Bielefeld-CeBiTec_2014-10-11_Carboxy_weiss_wiki.png" width="450px"></a><br>
-
<font size="2" style="text-align:center;"><b>Figure1:</b> Schematic representation of the calvin cylce. The reaction shwon in green can be realized by enzymes that naturally exist in <i>E. coli</i>, while the red one need to be expressed heterologous to fullfill the whole calvin cycle in <i>E. coli</i>.</font>
+
<font size="2" style="text-align:center;"><b>Figure1:</b> Schematic representation of the calvin cylce. The reaction shown in green can be realized by enzymes that naturally exist in <i>E. coli</i>, while the red one need to be expressed heterologous to enable the whole <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/CO2-fixation/Calvin-Cycle">calvin cycle</a> in <i>E. coli</i>. For this purpose we made different approaches. First of all we identified two <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/CO2-fixation/RuBisCO">RuBisCOs</a> (from <i>Halothiobacillus neapolitanus</i> and from <i>Synechococcus elongatus</i>) as the most efficient and most fitting ones. We synthesized different parts of the sequence to optimize the codon usage and to remove illegal restriction sites. The target is to compare the efficiency of the two RuBisCOs.</font>
</div>
</div>
</center>
</center>

Revision as of 16:05, 17 October 2014


Module II - Carbon Dioxide (CO2) Fixation

The particular aim of the second module is to realize the carbon dioxide fiaxtion in E. coli. For this approach all items, like the Sedoheptulose-1,7-Bisphosphatase, the Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and the mechanism of carbon dioxide fixation a tested separetly in various approaches. For the optimization of the carbon dioxide fixation under aerobic growth conditions we investigate the anerobic microcompartment from Halothiobacillus neapolitnaus, called the carboxysom.


Figure1: Schematic representation of the calvin cylce. The reaction shown in green can be realized by enzymes that naturally exist in E. coli, while the red one need to be expressed heterologous to enable the whole calvin cycle in E. coli. For this purpose we made different approaches. First of all we identified two RuBisCOs (from Halothiobacillus neapolitanus and from Synechococcus elongatus) as the most efficient and most fitting ones. We synthesized different parts of the sequence to optimize the codon usage and to remove illegal restriction sites. The target is to compare the efficiency of the two RuBisCOs.