Team:ETH Zurich/modeling/int

From 2014.igem.org

(Difference between revisions)
m (State of the Art)
m (Characterization of the integrase DNA-binding reaction)
Line 136: Line 136:
[[File:ETH Zurich Bonnet S4.jpg|center|400px|thumb|Transfer function from aTc to Bxb1. The experimental data corresponds to the points. They fitted this data with their own model. Supplementary figure S4 of Bonnet's paper ''Amplifying Genetic Logic Gates''<sup>[[Team:ETH_Zurich/project/references|[9]]]</sup>]]
[[File:ETH Zurich Bonnet S4.jpg|center|400px|thumb|Transfer function from aTc to Bxb1. The experimental data corresponds to the points. They fitted this data with their own model. Supplementary figure S4 of Bonnet's paper ''Amplifying Genetic Logic Gates''<sup>[[Team:ETH_Zurich/project/references|[9]]]</sup>]]
-
To use their experimental data, we have to model their induction mechanism using aTc. We use a simplify version of it proposed by the [https://2013.igem.org/Team:UCSF 2013 iGEM team UCSF]. They modeled the induction with aTc as a leaky Hill function. In the following table are the set of parameters introduced to model induction.
+
To use their experimental data, we have to model their induction mechanism using aTc. We use a simplified version of this phenomenon proposed by the [https://2013.igem.org/Team:UCSF 2013 iGEM team UCSF]. They modeled the induction with aTc as a leaky Hill function. In the following table are the set of parameters introduced to model induction.
{| class="wikitable"
{| class="wikitable"
Line 190: Line 190:
;'''Assumption D'''
;'''Assumption D'''
-
:The activation by aTc is assumed to be dominant over degradation of Bxb1 and dimerization of Bxb1. It is supposed to be valid on the range of aTc concentration considered.
+
:The activation by aTc is assumed to be dominant over degradation and dimerization of Bxb1. It is supposed to be valid on the range of aTc concentration considered.
$$\frac{k_{mRNA_{Bxb1}}*(A_L + B_L * \frac{[aTc]^n}{[aTc]^n+K_L^n})}{d_{Bxb1}K'_{DBxb1}} >> 1
$$\frac{k_{mRNA_{Bxb1}}*(A_L + B_L * \frac{[aTc]^n}{[aTc]^n+K_L^n})}{d_{Bxb1}K'_{DBxb1}} >> 1
$$  
$$  

Revision as of 05:32, 17 October 2014

iGEM ETH Zurich 2014