Team:Hong Kong HKUST/pneumosensor/results
From 2014.igem.org
m |
|||
Line 37: | Line 37: | ||
<td class= "content_cell"> | <td class= "content_cell"> | ||
<div class= "content_area_one_row"> | <div class= "content_area_one_row"> | ||
- | <p>The two-component regulatory system in <i>S. pneumoniae</i>, consisting of the receptor ComD and its response regulator ComE was to be used in detecting the autoinducer molecule, competence-stimulating peptide (CSP) and so detect <i>S. pneumoniae</i> populations correspondingly. </p> | + | <p>The two-component regulatory system in <i>S. pneumoniae</i>, consisting of the receptor ComD and its response regulator ComE was to be used in detecting the |
+ | autoinducer molecule, competence-stimulating peptide (CSP) and so detect <i>S. pneumoniae</i> populations correspondingly. The activity of the <i>comCDE</i> operon | ||
+ | promoter (P<sub>comCDE</sub>) is induced by phosphorylated ComE. In order to facilitate characterization of P<sub>comCDE</sub>, we use the phosphorylmimetic ComE | ||
+ | mutant, ComE<sup>D58E</sup>, in the pKHS plasmid which was kindly sent to us by Martin et al., from the Université de Toulouse. The characterization of | ||
+ | P<sub>comCDE</sub> is for the purpose of linkage to the σ<sup>x</sup> promoters module by regulating expression of the sigma factor. </p> | ||
</div> | </div> | ||
</td> | </td> | ||
Line 52: | Line 56: | ||
<div class= "content_area_one_row"> | <div class= "content_area_one_row"> | ||
<p> | <p> | ||
- | <b> | + | <b>ComD</b> |
<br><br> | <br><br> | ||
We engineered in a FLAG protein tag in the 3’ end of ComD by including the sequence in <i>comD</i> extraction primer. | We engineered in a FLAG protein tag in the 3’ end of ComD by including the sequence in <i>comD</i> extraction primer. | ||
Line 65: | Line 69: | ||
<br><br> | <br><br> | ||
- | + | <b>ComE</b> | |
<i>comE</i> was extracted from pKHS-<i>come</i> kindly sent to us by Dr. Don Morrison (Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires). Extraction was done using the following primers: | <i>comE</i> was extracted from pKHS-<i>come</i> kindly sent to us by Dr. Don Morrison (Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires). Extraction was done using the following primers: | ||
<br><br> | <br><br> | ||
Line 86: | Line 90: | ||
<br><br> | <br><br> | ||
However, site-directed mutagenesis attempts were unsuccessful, so the gene was extracted in two parts using (i) <i>comE</i> forward primer & mutagenesis | However, site-directed mutagenesis attempts were unsuccessful, so the gene was extracted in two parts using (i) <i>comE</i> forward primer & mutagenesis | ||
- | reverse primer; (ii) <i>comE</i> reverse primer & mutagenesis forward primer. The two fragments were then ligated with the pSB1C3 backbone through Gibson Assembly.</ | + | reverse primer; (ii) <i>comE</i> reverse primer & mutagenesis forward primer. The two fragments were then ligated with the pSB1C3 backbone through Gibson Assembly. |
- | </div> | + | <br><br> |
+ | |||
+ | <u><b>P<sub>comCDE</sub></b></u> | ||
+ | The promoter region of the <i>comCDE</i> operon only contains 67bp. By estimating the position of the transcription start site of P<sub>comCDE</sub>, the total size of the | ||
+ | promoter region should be 89bp. We obtain the promoter region by oligo annealing. In designing the forward and reverse oligos, we added the XbaI cut site to the prefix and | ||
+ | SpeI cut site to the suffix at the two ends of the oligos respectively. The backbone pSB1C3 was used. P<sub>comCDE</sub> was ligated with GFP generator (BBa_E0240), which | ||
+ | contains a RBS (BBa_B0032), GFP (BBa_E0040) and double terminator (BBa_B0015). The purpose of this construct is to measure the functionality of P<sub>comCDE</sub> in the presence | ||
+ | and absence of phosphorylated ComE by green fluorescence. BBa_E0240 was obtained from 2014 iGEM distribution kit. The bacterial strain of E.coli used was DH10B. We have tried to | ||
+ | ligate P<sub>comCDE</sub> with BBa_E0240, but unfortunately due to time limitation, we were not able to verify the sequence of our ligated products. | ||
+ | <br><br> | ||
+ | |||
+ | P<sub>comCDE</sub> forward oligo:<br> | ||
+ | CTAGAGAAAAAGTACACTTTGGGAGAAAAAAATGACAGTTGAGAGAATTTTATCTAAAACGAAATTCCATTTTGTATAATGGTTTTTGTAAGTTATA<br> | ||
+ | [6'XbaI prefix][89'PcomCDEregion][2'SpeI suffix] | ||
+ | <br><br> | ||
+ | P<sub>comCDE</sub> reverse oligo:<br> | ||
+ | CTAGTATAACTTACAAAAACCATTATACAAAATGGAATTTCGTTTTAGATAAAATTCTCTCAACTGTCATTTTTTTCTCCCAAAGTGTACTTTTTCT<br> | ||
+ | [6'SpeI suffix][89'PcomCDEregion][2'XbaI prefix] | ||
+ | <br><br> | ||
+ | |||
+ | <u><b>ComE<sup>D58E</sup><b><u> | ||
+ | The phosphorylmimetic comE mutant, comE<sup>D58E</sup> was sent by Martin et al., the pKHS plasmid. pKHS is an expression vector, which contains a T7 promoter and kanamycin | ||
+ | resistance gene. T7 promoter is induced by isopropyl β-D-1-thiogalactopyranoside (IPTG). </p> | ||
+ | |||
+ | </div> | ||
</td> | </td> | ||
Revision as of 11:54, 17 October 2014
Pneumosensor Results
Detection Module
Overview
The two-component regulatory system in S. pneumoniae, consisting of the receptor ComD and its response regulator ComE was to be used in detecting the autoinducer molecule, competence-stimulating peptide (CSP) and so detect S. pneumoniae populations correspondingly. The activity of the comCDE operon promoter (PcomCDE) is induced by phosphorylated ComE. In order to facilitate characterization of PcomCDE, we use the phosphorylmimetic ComE mutant, ComED58E, in the pKHS plasmid which was kindly sent to us by Martin et al., from the Université de Toulouse. The characterization of PcomCDE is for the purpose of linkage to the σx promoters module by regulating expression of the sigma factor. |
Construct
ComD
|
S. pneumoniae σx Promoters Module
Overview
The activity of Com-Box promoter is turned on by a specific sigma factor that is produced by a regulatory gene comX. The σx will bind to the Com-Box promoter region and activate gene expression. σx serve as an inducer with high specificity as it binds to an area of several specific 8 base pairs (TACGAATA) on the Com-Box promoter. This σx-Com-Box system could be used as a highly specific reporting system in our S.pneumonia detection platform.
However in nature, ComX protein will be degraded by ClpXP enzyme which exists in E. coli and some other bacteria. Hence, to ensure the induction of Com-Box promoter by σx, ComW protein is needed as it functions to protect σx from being degraded by ClpXP. ComW protein will be degraded instead, increasing the amount of σx produced.
|
Construct |
σx Generator construct (BBa_K1379006) and comW construct
Backbone pSB1C3 was used for σx generator construct and comW construct. comX gene / comW gene were fused with BBa_K880005 which contains a constitutive promoter (BBa_J23100) and strong RBS (BBa_B0034). The purpose of this strong constitutive promoter and strong RBS is to unsure the large production of σx and ComW protein throughout time. Then, a double terminator (BBa_B0015) is fused with the promoter, RBS, and comX. BBa_K880005 and BBa_B0015 were obtained from 2014 iGEM distribution kit.
|
PcelA (BBa_ K1379002) and PcomFA (BBa_ K1379003) construct
Backbone pSB1C3 was used for PcelA and PcomFA construct. PcelA / PcomFA gene was fused with BBa_E0240, which contains a medium RBS (BBa_B0034), GFP (BBa_E0040) and double terminator (BBa_B0015). The purpose of this GFP generator is to indicate the functionality of PcelA and PcomFA in the presence and absence of σx. BBa_E0240 was obtained from 2014 iGEM distribution kit. The bacterial strain of E. coli used is DH10B.
|
Assembly and Characterization
Assembly |
Home |
Pneumosensor |
Riboregulator |
Human Practice |
Team |
WetLab |
Achievement |