Team:Cornell/project/background

From 2014.igem.org

(Difference between revisions)
Line 16: Line 16:
</div>
</div>
<div class="row">
<div class="row">
-
<div class="col-md-12 col-xs-18">
+
<div class="col-md-6 col-xs-9">
<h2>Sequestration Systems</h2>
<h2>Sequestration Systems</h2>
Previously, research groups have developed such filtration systems for some of the most harmful heavy metals. One of our faculty advisors at Cornell, Dr. David Wilson, has developed such systems for mercury and nickel. We plan to work to improve the efficiency and lifespan of these filtration systems. Additionally, we will be developing a novel sequestration system for lead by utilizing a putative lead transport protein from <i>Nicotiana tabacum</i>.  Further information the the toxic effects of the heavy metals we are targeting as well as the transport proteins we are utilizing can be found by clicking the icons below.  
Previously, research groups have developed such filtration systems for some of the most harmful heavy metals. One of our faculty advisors at Cornell, Dr. David Wilson, has developed such systems for mercury and nickel. We plan to work to improve the efficiency and lifespan of these filtration systems. Additionally, we will be developing a novel sequestration system for lead by utilizing a putative lead transport protein from <i>Nicotiana tabacum</i>.  Further information the the toxic effects of the heavy metals we are targeting as well as the transport proteins we are utilizing can be found by clicking the icons below.  
 +
</div>
 +
<div class="col-md-6 col-xs-9">
 +
<a class="thumbnail" href="https://2014.igem.org/Team:Cornell/project/background/lead">
 +
<img src="https://static.igem.org/mediawiki/2014/d/d5/Cornell_Pb.png">
 +
<div class="caption center">
 +
<h3>Lead System</h3>
 +
</div>
 +
</a>
 +
<a class="thumbnail" href="https://2014.igem.org/Team:Cornell/project/background/mercury">
 +
<img src="https://static.igem.org/mediawiki/2014/0/09/Cornell_Hg.png">
 +
<div class="caption center">
 +
<h3>Mercury System</h3>
 +
</div>
 +
</a>
 +
<a class="thumbnail" href="https://2014.igem.org/Team:Cornell/project/background/metallothionein">
 +
<img src="https://static.igem.org/mediawiki/2014/6/60/Cornell_Ni.png">
 +
<div class="caption center">
 +
<h3>Nickel System</h3>
 +
</div>
 +
</a>
</div>
</div>
</div>
</div>
<div class="row">
<div class="row">
<div class="col-md-4 col-xs-6">
<div class="col-md-4 col-xs-6">
-
<div class="thumbnail">
+
<a class="thumbnail" href="https://2014.igem.org/Team:Cornell/project/background/lead">
<img src="https://static.igem.org/mediawiki/2014/d/d5/Cornell_Pb.png">
<img src="https://static.igem.org/mediawiki/2014/d/d5/Cornell_Pb.png">
<div class="caption center">
<div class="caption center">
<h3>Lead System</h3>
<h3>Lead System</h3>
</div>
</div>
-
</div>
+
</a>
</div>
</div>
<div class="col-md-4 col-xs-6">
<div class="col-md-4 col-xs-6">
-
<div class="thumbnail">
+
<a class="thumbnail" href="https://2014.igem.org/Team:Cornell/project/background/mercury">
<img src="https://static.igem.org/mediawiki/2014/0/09/Cornell_Hg.png">
<img src="https://static.igem.org/mediawiki/2014/0/09/Cornell_Hg.png">
<div class="caption center">
<div class="caption center">
<h3>Mercury System</h3>
<h3>Mercury System</h3>
</div>
</div>
-
</div>
+
</a>
</div>
</div>
<div class="col-md-4 col-xs-6">
<div class="col-md-4 col-xs-6">
-
<div class="thumbnail">
+
<a class="thumbnail" href="https://2014.igem.org/Team:Cornell/project/background/metallothionein">
<img src="https://static.igem.org/mediawiki/2014/6/60/Cornell_Ni.png">
<img src="https://static.igem.org/mediawiki/2014/6/60/Cornell_Ni.png">
<div class="caption center">
<div class="caption center">
<h3>Nickel System</h3>
<h3>Nickel System</h3>
</div>
</div>
-
</div>
+
</a>
</div>
</div>
</div>
</div>

Revision as of 05:24, 16 October 2014

Cornell iGEM

web stats

Project Background

Water Pollution

Heavy metal pollution in water is one of the most significant public health risks around the world. Pollutants including lead, mercury, and nickel can enter water supplies through a number of methods including improper disposal of waste, industrial manufacturing, and mining. When solubilized, they have the ability to cause environmental and health problems. These heavy metals are acutely toxic at high concentrations and carcinogenic with long-term exposure even at low concentrations. Methods exist to remove heavy metals from water supplies, but these methods create other hazardous wastes and are much more effective in waters with high concentrations of metals. Due to the high affinity of binding proteins, a biological based filtration system can be more effective at treating water contaminated with lower concentrations of heavy metals without generating large volumes of toxic waste.

Sequestration Systems

Previously, research groups have developed such filtration systems for some of the most harmful heavy metals. One of our faculty advisors at Cornell, Dr. David Wilson, has developed such systems for mercury and nickel. We plan to work to improve the efficiency and lifespan of these filtration systems. Additionally, we will be developing a novel sequestration system for lead by utilizing a putative lead transport protein from Nicotiana tabacum. Further information the the toxic effects of the heavy metals we are targeting as well as the transport proteins we are utilizing can be found by clicking the icons below.