Team:UCL/Science/Bioprocessing

From 2014.igem.org

(Difference between revisions)
Line 296: Line 296:
<p>Overall the meeting was a great success in guiding our project towards an industrial relevant direction. Running through our presentation highlighted a number of changes needed before the jamboree, specifically putting more emphasis on the novelty and innovation of our project. Ensuring our project delivers a solution that is conscious of the needs of the industry is extremely important to us, meetings such as these are invaluable to the progression of our work.</p>
<p>Overall the meeting was a great success in guiding our project towards an industrial relevant direction. Running through our presentation highlighted a number of changes needed before the jamboree, specifically putting more emphasis on the novelty and innovation of our project. Ensuring our project delivers a solution that is conscious of the needs of the industry is extremely important to us, meetings such as these are invaluable to the progression of our work.</p>
</div>
</div>
 +
 +
 +
<!--- This is the fourth section --->
<!--- This is the fourth section --->
<div style="display: none;" id="view4">
<div style="display: none;" id="view4">
-
 
<br>
<br>
Line 350: Line 352:
</div>
</div>
 +
 +
<!--- This is the fifth section --->
<!--- This is the fifth section --->
<div style="display: none;" id="view5">
<div style="display: none;" id="view5">
-
<div class="textTitle"><h4>Why Microfluidics?</h4></div>
+
<h4>Testing the performance of immobilization unit using microfluidic tools</h4>
-
<!-- This is the main text. Anything in a <p>TEXT</p> is a paragraph and will be spaced appropriately-->
+
<br>  
<br>  
-
<p>Small-scale bioreactors are often the workhorse for process development. By experimenting at this scale, it is possible to determine the optimum growth conditions for E. coli. This will allow to assess costs at the required scale based on biomass requirements.We are using E. coli to cultivate the enzymes necessary for the biodegradation of azo dyes. By combining information on the production of azodyes in textile factories and stoichiometric relations, we will design an optimised cell growth (fermentation) stage.</p>
+
<p>Optimizing process performance at a microfluidic level is often necessary for the economically feasible development of a process due to the small volumes of liquid associated with it. Subsequently, creating a microfluidic prototype device of the large-scale module is extremely relevant in quantifying process variables such as the flow rate to determine residence time of the azodye suspension within the module. This allows for preliminary mass transfer calculations and azodye degradation rates.</p>  
-
 
+
<br>
-
<!---TABLE START--->
+
<!---img src=”microfluidic device ”--->img.
-
<table style="width:100%"><colgroup><col width="60%"><col width="40%"></colgroup><tbody><tr><td>
+
<video>
-
<!-- This is the video. Change the align attribute to left to move the video to the left-->
+
<br>
-
<div class="video-wrapper">
+
<p>
-
<iframe style="padding:0.5%; border:0.5% #000;" src="//www.youtube.com/embed/0OlMfq5WT6k" allowfullscreen="" align="left" frameborder="0" height="380" width="600"></iframe></div></td><td>
+
After experimentation with dyed water at controlled flow rates, slight dead zones were observed within the device. A second prototype was developed:</p>
-
<!-- This is the video. Change the align attribute to left to move the video to the left-->
+
<img src="https://static.igem.org/mediawiki/2014/3/32/Microfluidicsdesign2.png" style="margin:0 0 0 10px;" width="40%">
-
<div class="video-wrapper">
+
-
<iframe style="padding:0.5%; border:0.5% #000;" src="//www.youtube.com/embed/buf--n4dcUs" allowfullscreen="" align="right" frameborder="0" height="380" width="600"></iframe></div></td></tr></tbody></table>
+
-
<!---TABLE END--->
+
-
<br><!-- div is a divisor tag that just separates content. This class makes the paragraph in it black-->
+
-
<div class="SCJMFHIGHLIGHT">
+
-
<p>
+
-
<img src="https://static.igem.org/mediawiki/2014/4/49/Microfluidic_set-up_iGEM.JPG" style="float:right;margin:0 0 0 10px;" width="35%">
+
-
The videos above were recorded in the UCL ACBE Microfluidics labs by members of our team. The video on the left is a demonstration of laminar flow across a T-junction microfluidic device. The video on the right demonstrates one of the methods of mixing made possible by microfluidics (herring bone channels etched into the chip).
+
-
<br><br>The image on the right displays the microfluidics set-up used by our iGEM team. This device and equipment is provided for by the UCL microfluidics lab.</p></div>
+
-
 
+
</div>
</div>

Revision as of 00:06, 16 October 2014

Goodbye Azodye UCL iGEM 2014

Sustainable Bioprocessing

Our Design Process

We will use rapid polymer prototyping techniques to generate microfluidic chips that will allow us to test our reaction and aid in the construction of a realistic bioprocess, which can be successfully scaled-up for industrial use. As we optimise and change our bioprocess, we can also quickly design new microfluidic chips that can mimic its development on a micro-scale. For example, it is our goal to integrate multiple downstream steps, such as chromatography, in order to isolate potential useful products. Demonstrating this in a microfluidic system is less time-consuming and far more cost effective than doing so at a larger scale.


For our microfluidic bioreactor, we will be using a magnetic free floating bar as our mixing system. This is an effective method of mixing at a microfluidic scale, as demonstrated in the video on the right. This video is of a microfluidic chemostat bioreactor designed by Davies et al. 2014 UCL, using a free-floating bar to mix two dyes.



Above are some examples of the microfluidics devices developed by our team for use in the lab at the UCL ACBE. The devices are initially designed using AutoCAD (2D and 3D computer-aided design software), once the designs are finalised they can be 3D-printed using the facilities provided by the UCL Institute of Making and UCL ACBE; allowing our bioprocess and laboratory team to experiment and improve designs.


An example of one of our microfluidic devices designed on AutoCAD can be downloaded here. This device utilises the basic concept of mixing the cells and dyes, producing a single output stream; much alike to the bioprocessing concept. During the course of designing the microfluidic device, several key considerations must be taken into account: ability to withstand high pressure without leakage; materials of construction to be inert and transparent; size constraints of inlet and outlet piping; ability to accurately 3D-print the device.


Why Bioprocessing?

Bioprocess engineering is a conglomerate of fields and is extensively employed to optimize a variety of production processes. In order to cope with market forces, industries for example the pharmaceutical, have had to considerably improve their bioprocessing tools and techniques. As a result a range of novel process alternatives have been developed to harness product-specific properties, each bearing benefits, disadvantages and costs. While these can be used to drive financial returns, biological processing is becoming a gateway to eco-friendly alternatives for the treatment of recalcitrant wastewater such as industrial effluents. By providing more flexibility in supporting efficient degradation of toxic compounds and having lower operating costs, the biological treatment process brings forward key advantages over it's traditional counterpart.
A typical bioprocess involves the fermentation of a stock culture (e.g. E. coli) at a small scale which is subsequently scaled up to suitable production capacities. The products from the fermentative stages are consequently separated and purified using a variety of unit operations designed to exploit the orthogonal properties of desired products. These can then be formulated into their ultimate delivery form.




Flowsheet with unit operations for a typical bioprocess

The design of a successful bioprocess requires careful analysis of the many factors that impact choice of design parameters and process variables. It is crucial to consider the cost of the process at each stage to assess it's large scale feasibility.

Let's look at an example bioprocess
1. Upstream: Production bioreactor preceded by small-scale seed fermenters
2. Downstream: constitutes of three main stages
- Recovery relates to primary unit operations i.e. centrifugation and filtrations. The main goal is to concentrate the desired compound within the process stream by reducing volumes and removing fermentation byproducts.
- Purification involves unit operations such as chromatography, crystallization and ultrafiltration. The final stages are necessary to ensure purity requirements are met.
- Formulationinvolves the integrating of the product into the target delivery route followed by packaging and storage.

Contact Us

University College London
Gower Street - London
WC1E 6BT
Biochemical Engineering Department
Phone: +44 (0)20 7679 2000
Email: ucligem2014@gmail.com

Follow Us