Team:Bielefeld-CeBiTec/Project/rMFC/ReactorSystem
From 2014.igem.org
Line 103: | Line 103: | ||
<h6>References</h6> | <h6>References</h6> | ||
<ul> | <ul> | ||
- | <li id=" | + | <li id="Park1999"> |
<div class="element" style="margin_10px 10px 10px 10px; padding:10px 10px 10px 10px"> | <div class="element" style="margin_10px 10px 10px 10px; padding:10px 10px 10px 10px"> | ||
<div id="text"> | <div id="text"> | ||
Park, D. H.,Laivenieks, M., Guettler, M. V., Jain, M. K. & Zeikus, J.G. (1999) Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolic production. | Park, D. H.,Laivenieks, M., Guettler, M. V., Jain, M. K. & Zeikus, J.G. (1999) Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolic production. | ||
In: <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC91436/" | In: <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC91436/" | ||
- | target="_blank"> | + | target="_blank">Appl. Environ. Microbiol.</a>, 65 (7), pp. 2912 - 2917. |
</div> | </div> | ||
</div> | </div> |
Revision as of 20:00, 15 October 2014
rMFC
Design of a electrobiochemical reactor system
To perform our cultivation experiments under well defined conditions it was necessary to design a new
bioreactor system. Besides the typically controlled parameters in bioreactors like the oxygen partial pressure, pH-signal, temperature and other parameters, it was indispensable to have the possibility to energize the reactor with a defined current. That is why we decided to build an H-cell reactor. This kind of reactor consits of two compartments which are connected by a glass flange. It is possible to fix a membrane in the middle of the flange connection so that the two compartments are seperated. We used a cation selective Nafion® membrane which allowed the divison of the two compartments into an anode and cathode space.
Figure 1 shows schematically the layout of our design.
Figure 1: Planed design for a H-cell reactor: 1 cathode space with sparger for aeration and a heater coil, 2 anode space with a heater coil 3 caps for the reactor glass bodies which provide several fittings for electrodes, heating, pH- adjustment and sampling, 4 cation selective Nafion® membrane, 5 sealing ring 6 autoclavable high-temp clamp
That is why we considered an alternative reactor design. The other reactor concept is named "scalable flow cell reactor" (SFC) and allows an continous mode of operation. In this reactor type the electron transfer must be realized by direct electron transfer. That is possible if the cells stay in direct contact to the electrode material. The electron transfer is carried out by cytochromes in the outer membrane. That is why we focused on different types of mediators and the expression of key type cytochromes. The Layout of the SFC is shown in Figure 2.
References
-
Park, D. H.,Laivenieks, M., Guettler, M. V., Jain, M. K. & Zeikus, J.G. (1999) Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolic production. In: Appl. Environ. Microbiol., 65 (7), pp. 2912 - 2917.
References
-
Qiao, Y., Bao, S. & Li, C. M. (2010): Electrocatalysis in microbial fuel cells—from electrode material to direct electrochemistry. In: Energy Environ. Sci. 3 (5), pp. 544.