Team:Tokyo Tech/Policy and Practices

From 2014.igem.org

(Difference between revisions)
Line 124: Line 124:
             </tr>
             </tr>
             <tr>
             <tr>
-
               <td><div align="center"><span class="info-18"><a href="https://2014.igem.org/File:Tokyo_Tch_Sola.png"><img src="https://static.igem.org/mediawiki/2014/e/ea/Tokyo_Tech_Sola.png" alt="" width="244" height="322" /></a></span></div></td>
+
               <td><div align="center"><span class="info-18"><a href="https://2014.igem.org/File:Tokyo_Tech_Sola.png"><img src="https://static.igem.org/mediawiki/2014/e/ea/Tokyo_Tech_Sola.png" alt="" width="244" height="322" /></a></span></div></td>
               <td><p align="left" class="info-18">Solar energy is one of the alternative sources of energy widely used in the world. In this project, we made a solar battery by using photosynthetic bacteria and current generating bacteria to generate power. Wherever sunlight shines, electricity can be generated by this solar battery. It was invented and improved in several institutes, but the low efficiency and inconvenient hardware still tend to be a problem. Therefore, we tried to improve the efficiency of the existing bacteria-using solar battery to make it practical.</p></td>
               <td><p align="left" class="info-18">Solar energy is one of the alternative sources of energy widely used in the world. In this project, we made a solar battery by using photosynthetic bacteria and current generating bacteria to generate power. Wherever sunlight shines, electricity can be generated by this solar battery. It was invented and improved in several institutes, but the low efficiency and inconvenient hardware still tend to be a problem. Therefore, we tried to improve the efficiency of the existing bacteria-using solar battery to make it practical.</p></td>
             </tr>
             </tr>

Revision as of 14:27, 4 October 2014

Tokyo_Tech

Policy & Practices

What we do

Content

1. Introduction

2. Poster Session at the University of Tokyo

3. Interview with the Science Magazine Newton

4. MUSE TALK

5. Visit to Elementary School

6. The Genetics Society of Japan

 
 
1.Introduction
2.Poster Session at the University of Tokyo
We participated in a poster session held at the University of Tokyo on May 18th. iGEM teams from all over Japan

gathered at this event and introduced their project to the visitors. Not only students and professors at the university, but also people without any scientific background came and listened to our projects. After introducing our projects, we asked visitors for feedbacks to make our projects better. Our central purpose in this event was to let people know what iGEM is, and change the negative thinking about synthetic biology that many people have.


Fig. 6-1-1. A team member describing the project to visitors
 
   

To introduce our projects to the visitors, we made a poster for each project. Using figures, we tried our best to make it easy for people from any background to understand. Besides posters for our projects, we also made an introduction to iGEM to let more people know about it.

The five projects that we introduced at the poster session were: solar battery, treatment for pollen allergy, lie detector, Bank E. coli, and fertilizer.

   
• Solar Battery
   

Solar energy is one of the alternative sources of energy widely used in the world. In this project, we made a solar battery by using photosynthetic bacteria and current generating bacteria to generate power. Wherever sunlight shines, electricity can be generated by this solar battery. It was invented and improved in several institutes, but the low efficiency and inconvenient hardware still tend to be a problem. Therefore, we tried to improve the efficiency of the existing bacteria-using solar battery to make it practical.

Fig. 6-1-2. Bacteria-using Solar Battery Poster
 
 
• Treatment for Pollen Allergy
   
 

In Japan, it is said that one in five people suffers from pollen allergy. More than twenty million people suffer from symptoms, and the number is increasing every year. In order to cure this, we thought of using E. coli in immunotherapy. Immunotherapy is a recently developed treatment that can completely cure the allergy. You introduce allergen into the body in very small amounts, and by gradually increasing it, you can suppress the body′s hyper-allergic reaction. However, there are several defects in this treatment. You have to go to the hospital for treatment many times, and it takes three to five years for a complete recovery. By using E. coli, we tried to invent a faster and easier immunotherapy.

Fig. 6-1-3. Immunotherapy Poster
 
   
• Lie Detector
   

In this project, we tried to make a lie detector by using E. coli. By putting Na+ channel in the flagellum motor, E. coli responds to the sodium ion contained in a liar′s sweat and starts running. If the E. coli moves, it comes in contact with lysozyme and the outer membrane dissolves. Then, ATP inside the E. coli is released to react with luciferase, producing a glow.

Fig. 6-1-4. Lie Detector Poster
 
 
• Bank E.coli
   

We thought of making E. coli act as a bank by taking things in and out. We had two scenarios for this theme:

• Exchanging things between Bank E. coli and Consumer E. coli

• Making deposits and withdraws by a group of Bank E. coli

Other than these stories, recreating the bursting of the bubble economy with E. coli was also in the plan.

Fig. 6-1-5. Bank E. coli Poster
 
 
• Fertilizer
   
 

Micronutrient fertilizer is very important to the growth of crops. However, more than 70% of the fertilizer goes unused in soil. Phosphorus included in the fertilizer becomes insoluble by binding with metals, such as aluminum and calcium. Since plants cannot absorb these immobilized phosphorus, the phosphorus accumulates in the soil. To solve this problem, we decided to use E. coli to degrade the immobilized phosphorus into phosphoric acid, which plants can absorb. After producing phosphoric acid, E. coli stores it in its body in a polymeric form. By collecting these E. coli and extracting the polymer, we can retrieve the phosphorus left in the soil.

Fig. 6-1-6. Fertilizer Poster
   

Results

After introducing what iGEM is and our projects to the visitors, they gave us many advices and opinions. We prepared blue and yellow blank Post-it notes, and asked them to write down their opinions. Expressions of agreement or support were written on the yellow Post-it notes, while critical points or suggestions were written on the blue Post-it notes. We reflected the feedback and comments from the visitors to make our projects better (The comments that visitors gave for each project are listed in Table 1). We thank all the visitors for cooperating us in this poster session.

Many visitors, especially people without any scientific background, had negative thinking of E. coli at first. However, by introducing the properties of E. coli, they changed their mind. On the Post-it, there were many opinions saying that they were looking forward to new inventions using E. coli. We can say that our goal, which is letting people know and changing the negative thinking of synthetic biology, has been achieved.
Click here too see visitors' opinions

Fig. 6-1-7. Our members discussing about the project with the visitor.
Post-it with comments are stuck on the board
 

 

3.Interview with the Science Magazine Newton

On June 17th, we had an interview on graphic science magazine Newton. Newton is one of the most popular science magazine born in Japan. Although it is a scientific book, easy contents and catchy photos are used, so it has been read by many people regardless of age and sex. In the article, the history and requirements of iGEM, as well as what our team has done in preparing for the Jamboree were written. The article is shown below.

   
        Fig. 6-1-8. Picture of the Newton article          Fig. 6-1-9. Group photo of our team in the article
   

Reference
Yasashiku Wakaru Seimei no Kagaku [Easily Understandable Life Science]. (Newton supplement Mook) Tokyo: Newton Press, 2014

 

4.Muse Talk

Fig. 6-1-10. Our member speaking at MUSE TALK

On September 1st, we gave a presentation at a workshop called “MUSE TALK”. Managers, executives and technicians working in IT company participated in this event to learn about things outside their specialty. The contents of the presentation are listed below.

    • What is iGEM?

    • The trend in synthetic biology (The trend in iGEM 2013)

    • The project of Team Tokyo_Tech 2013

    • The development of technique that supports iGEM

     (BioBrick, database related to synthetic biology, MATLAB, etc.)

    • Introduction of Team Tokyo_Tech

    • What Team Tokyo_Tech 2014 has been doing since the new team was organized

In the presentation, we used many pictures and figures in the slide to make it easier to image synthetic biology, which is a completely new field for them.

Fig. 6-1-11. Our members explaining the iGEM database and BioBrick
     

After the presentation, we were able to get opinions from the audience. Hearing from people working in a different field was a great opportunity for us. Some people gave us ideas of a new product which we never thought of. Also, there were people who asked questions related to safety. All the people with those questions had things in common; they all thought it would be a big business chance if genetically engineered E. coli can be released safely in human and nature.

By listening to our presentation, many audience were impressed with the technology of synthetic biology, and acknowledged it as a research which estimates future prospects. We are planning to present in this workshop again after this year’s Jamboree, so we will be glad if more people from a variety of fields come to attend. In the next presentation, we are planning to introduce the trends in iGEM2014.

Fig. 6-1-12. Our members exchanging opinions with the audience
5.Visit to Elementary School

Our team members (Paniti Achararit, Ayaka Murase, Gyomon Ryu, and Miyabi Hishinuma) took part in a catered lecture on September 8th at Ohyamaguchi Elementary School. The aim of this visit was to let children know how important DNA and protein are for our human beings, as well as the essence of synthetic biology, which is: combining genes.

iGEM card game

For this event, we created “iGEM card game” which represents the essence of synthetic biology by combiningcards. This card game has several series of cards. Each series consists of 3 to 5 cards, each card represents the key parts of an iGEM project.

Fig. 6-1-13. Group picture with the students

The rule of this game is like poker. When we gather a whole series of cards, we can get points. By gathering them together, the player can understand how the combination of different genetic parts can be used to create living organisms with new and desired function.

Fig. 6-1-14. Our group member playing iGEM cards with the students

For example, one series represented Tokyo_Tech 2013’s project, “Mutant Ninja coli”. The aim of this project was to design a story by using a state switching circuit in E. coli to represent the life of ninja: switching between the state of mimicking civilian and battling with samurai. There are three characters, E. ninja, E. Samurai, and E. civilian in this story. This series consists of three parts: “state switching”,”receiving signal molecule from E. Samurai” and ”attacking E. Samurai with Shuriken”. Each of the cards represents one of the three parts (Figure 1).

Fig. 6-1-15. The card of Tokyo_Tech 2013 project

These cards not only represent the nature of synthetic biology, but also has many illustrations. Therefore, the card game became very popular among the students. Some students played the game many times and asked us if they can keep the cards for themselves.

Fig. 6-1-16. Slides used for explaining Tokyo_Tech 2013 project

Questionnaire

After the game, we asked the students to answer a questionnaire. Our survey consisted of the following questions:
Q1. Was the game rule easy to understand? : Easy / Cannot Say / Difficult
Q2. Was the explanation on the card easy to understand? : Easy / Cannot Say / Difficult
Q3. Have you heard of genes and proteins before? : Yes / No
Q4. What kind of image did you have about genes?
Q5. Did you know the word “synthetic biology” before? : Knew very well / A little / Not at all
Q6. Did you become interested in synthetic biology after playing the game? : Yes / No
Q7. What do you want to make by using synthetic biology?
Q8. Free comments about the game

Result of Analysis

Click here too see the result

Consideration of Safety

After playing cards with the students, we were able to have a talk with the school principal and vice principal. They appreciated us for creating cards and teaching the students about synthetic biology in a simple and approachable way.

It was their first time to learn about synthetic biology in detail, so the principals were impressed of the possibility of this field. However, they had doubts about the safety using genetically engineered creatures. Since those creatures do not exist in nature, we do not know what will happen when they are released into the wild. If something happens, it might take a long time to get the previous nature back. Many people have this fear of genetic engineering, and this leads to the bad image of synthetic biology. Based on these doubts, we explained to them the scientists’ measurements for safety. When we make a discovery, for example “iPS cells”, we consider if it is okay to use them for human or nature on a long-term basis. Just like inventing a new medicine, we have to test them on animals for more than ten years, and when the safety is secured, we decide to use them on human.

By discussing with the principals, we were able to know the public mind toward synthetic biology. We feel this image is due to the ignorance of this field. If we can get more people informed of the reality of synthetic biology, maybe we can change the general opinion. We will continue interacting with a variety of people so that more and more people can learn about synthetic biology.

 

 

 

 

6.The Genetics Society of Japan
      

We attended the 86th Annual Meeting of the Genetics Society of Japan. iGEM team Nagahama hosted this meeting, and 8 teams (HokkaidoU Japan, UT-Tokyo, Tokyo-Tech, TMU-Tokyo, Gifu, Kyoto, and Osaka) attended. There were three events at this meeting.

 
                       1) Exchanging opinions with other teams by using team poster
                       2) Presentation of this year's project in front of many scholars
                       3) Discussion about iGEM JAPAN's future initiatives
   
Fig. 6-1-17. Poster of the 86th Annual Meeting of
the Genetics Society of Japan
Fig. 6-1-18. Our member presenting in front of scholars
   
Discussion about the Project  
   
Each team did a poster session on this year's or previous years' project.
 
Fig. 6-1-19. Our team poster
Fig. 6-1-20. Teams of iGEM Japan
 
Discussion about iGEM JAPAN
 

We discussed about iGEM JAPAN’s future initiative at this meeting. Setting up iGEM JAPAN was committed to making it easier for iGEM teams to communicate with each other. However, the interactions between the iGEM teams have been decreasing recently, and the only event that iGEM teams gather together this year is the meetup held at Tokyo Metropolitan University in August.

 
Fig. 6-1-21. Group photo after presentation