Team:ETH Zurich/modeling/reactions
From 2014.igem.org
(Difference between revisions)
Line 2: | Line 2: | ||
<html> | <html> | ||
+ | <style> | ||
+ | element{font-size:1em;} | ||
+ | </style> | ||
<span class="equation">c = \pm\sqrt{a^2 + b^2}</span > | <span class="equation">c = \pm\sqrt{a^2 + b^2}</span > | ||
<div class="equation"> \displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }</div> | <div class="equation"> \displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }</div> |
Revision as of 08:31, 18 September 2014
Reactions
c = \pm\sqrt{a^2 + b^2}
\displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }
\displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
f(x) = \int_{-\infty}^\infty
\hat f(\xi)\,e^{2 \pi i \xi x}
\,d\xi