Team:Bielefeld-CeBiTec/Project/Isobutanol/GeneticalApproach
From 2014.igem.org
(10 intermediate revisions not shown) | |||
Line 35: | Line 35: | ||
<div class="main_menueButtonActual" style="width:180px"> | <div class="main_menueButtonActual" style="width:180px"> | ||
<p class="buttoncenter"><font color="#FFFFFF">Genetical Approach</font></p> | <p class="buttoncenter"><font color="#FFFFFF">Genetical Approach</font></p> | ||
+ | </div> | ||
+ | </a> | ||
+ | |||
+ | <br><br><a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/Isobutanol"style="color:#000000"> | ||
+ | <div class="main_menueButton" style="width:90px; float:right;margin-right:330px"> | ||
+ | <p class="buttoncenter"><font color="#FFFFFF">Results</font></p> | ||
</div> | </div> | ||
</a> | </a> | ||
Line 40: | Line 46: | ||
<!-- Button end --> | <!-- Button end --> | ||
- | + | <br> | |
<div class="element" style="margin:10px 10px 10px 10px; padding:10px 10px 10px 10px"> | <div class="element" style="margin:10px 10px 10px 10px; padding:10px 10px 10px 10px"> | ||
<div id="text"> | <div id="text"> | ||
<h6>Genetical Approach</h6> | <h6>Genetical Approach</h6> | ||
- | <p> | + | <p><a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/Isobutanol/Isobutanol">Isobutanol</a> is an important substance for industry. No known organism can produce isobutanol or other branched-chain alcohols. <a href="#Atsumi2008">Atsumi et al.</a> presented a metabolic pathway to produce isobutanol in <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Notebook/Organisms#E.coli" target="_blank"><i>Escherichia coli</i></a>. The pathway is shown in Figure 1. |
<div class="element" style="width:400px; margin-left:auto; margin-right:auto"> | <div class="element" style="width:400px; margin-left:auto; margin-right:auto"> | ||
<a href="https://static.igem.org/mediawiki/2014/8/8a/Bielefeld_CeBiTec_2014-10-16_Isobutanol_pathway.png" target="_blank"> | <a href="https://static.igem.org/mediawiki/2014/8/8a/Bielefeld_CeBiTec_2014-10-16_Isobutanol_pathway.png" target="_blank"> | ||
Line 52: | Line 58: | ||
<font size="2" style="text-align:left;"><b>Figure 1:</b> Schematic illustration of the isobutanol pathway</font> | <font size="2" style="text-align:left;"><b>Figure 1:</b> Schematic illustration of the isobutanol pathway</font> | ||
</div> | </div> | ||
- | The shown pathway starts with pyruvate and results in isobutanol. | + | The shown pathway starts with pyruvate and results in isobutanol. We also start with pyruvate which is generated from 3-phosphogylcerate in the glycolysis of the cell. For this 3-phosphogylcerate is required which is generated in the Calvin cycle of the CO<sub>2</sub> fixation in <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/CO2-fixation/CarbonDioxide">module II</a>. The steps in the conversion of pyruvate to 2-ketoisovalerate can be executed by proteins existing in <i>E. coli</i> (IlvIH, IlvC and IlvD). Since <i>E. coli</i> also has an alcohol dehydrogenase (AdhE), the only required protein for the isobutanol production is a ketoisovalerate decarboxylase. This protein (KivD) can be received from <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Notebook/Organisms#L.lactis" target="_blank"><i>Lactococcus lactis</i></a>. The pathway shown in Figure 1 is already an improvement of the described way. The native protein IlvIH is replaced by the AlsS from <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Notebook/Organisms#B.subtilis" target="_blank"><i>Bacillus subtilis</i></a> to increase the isobutanol production. (<a href="#Atsumi2008">Atsumi et al.</a>) |
<br> | <br> | ||
As we want to integrate this pathway in <i>E.coli</i> we used and improved existing BioBricks from the iGEM team NCTU Formosa 2011/2012. We used gene coding sequences of four out of five required proteins for the isobutanol production. | As we want to integrate this pathway in <i>E.coli</i> we used and improved existing BioBricks from the iGEM team NCTU Formosa 2011/2012. We used gene coding sequences of four out of five required proteins for the isobutanol production. | ||
Line 63: | Line 69: | ||
<li><i>kivD</i> (<a href="http://parts.igem.org/Part:BBa_K539742" target="_blank">BBa_K539742</a>)</li> | <li><i>kivD</i> (<a href="http://parts.igem.org/Part:BBa_K539742" target="_blank">BBa_K539742</a>)</li> | ||
</ul> | </ul> | ||
- | The coding sequence of the gene of Adh ( | + | The coding sequence of the gene of Adh (alcohol dehydrogenase), the fifth required protein, was not available as a BioBrick but because of <i>E.coli</i>'s own AdhE the pathway works (Atsumi et al., 2008). |
<br><br> | <br><br> | ||
- | As you can see in | + | As you can see in Figure 2 we have two approaches for our producing system. |
<div class="element" style="width:400px; margin-left:auto; margin-right:auto"> | <div class="element" style="width:400px; margin-left:auto; margin-right:auto"> | ||
<a href="https://static.igem.org/mediawiki/2014/9/96/Bielefeld_CeBiTec_2014-10-16_Isobutanol_constructs.png" target="_blank"> | <a href="https://static.igem.org/mediawiki/2014/9/96/Bielefeld_CeBiTec_2014-10-16_Isobutanol_constructs.png" target="_blank"> | ||
Line 74: | Line 80: | ||
We want to reproduce the pathway from iGEM team NCTU Formosa without their temperature system (<a href="http://parts.igem.org/Part:BBa_K887002">BBa_K887002</a>). In their system the first three proteins (AlsS, IlvC and IlvD) were generated while <i>E.coli</i> is incubated in a 37°C environment. During this the non-toxic intermediate 2-ketoisovalerate is accumulated. By shifting the temperature to a 30°C environment the missing KivD can be generated because of the non-active repressor. Together with the AdhE from <i>E. coli</i> KivD converts 2-ketoisovalerate into isobutanol. | We want to reproduce the pathway from iGEM team NCTU Formosa without their temperature system (<a href="http://parts.igem.org/Part:BBa_K887002">BBa_K887002</a>). In their system the first three proteins (AlsS, IlvC and IlvD) were generated while <i>E.coli</i> is incubated in a 37°C environment. During this the non-toxic intermediate 2-ketoisovalerate is accumulated. By shifting the temperature to a 30°C environment the missing KivD can be generated because of the non-active repressor. Together with the AdhE from <i>E. coli</i> KivD converts 2-ketoisovalerate into isobutanol. | ||
<br><br> | <br><br> | ||
- | In | + | In Figure 2A you can find our first approach where we also used the AdhE from <i>E. coli</i>. We disclaim the temperature system and put all coding sequences in a row behind a promoter separated by the RBS in front of each gene. We used <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Notebook/Protocols#Gibson" target="_blank">Gibson</a> as the cloning method for the part <a href="http://parts.igem.org/Part:BBa_K1465302" target="_blank">BBa_K1465302</a>. For cloning the <i>ptac</i> upstream the part <a href="http://parts.igem.org/Part:BBa_K1465302" target="_blank">BBa_K1465302</a>, the <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Notebook/Protocols#BioBrick"target="_blank">prefix insertion BioBrick assembly</a> was used. This idea resulted in the part <a href="http://parts.igem.org/Part:BBa_K1465306" target="_blank">BBa_K1465306</a>. |
<br><br> | <br><br> | ||
- | We found out, that the AdhA from <i>L. Lactis</i> is the best | + | We found out, that the AdhA from <i>L. Lactis</i> is the best alcohol dehydrogenase in literature (<a href="#Atsumi2010">Atsumi et al., 2010</a>). We wanted to increase the production of isobutanol by cloning the adhA gene downstream of our producing pathway. By <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Notebook/Protocols#Gibson">Gibson</a> we designed a new part (<a href="http://parts.igem.org/Part:BBa_K1465301" target="_blank">BBa_K1465301</a>) which contains the coding sequence of the adhA gene from <i>L. Lactis</i> and is combined with the RBS <a href="http://parts.igem.org/Part:BBa_B0034" target="_blank">BBa_B0034</a>. Afterwards we did several <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Notebook/Protocols#BioBrick" target="_blank">BioBrick assemblies</a> for combining the parts <a href="http://parts.igem.org/Part:BBa_K731500" target="_blank">BBa_K731500</a>, <a href="http://parts.igem.org/Part:BBa_K1465302" target="_blank">BBa_K1465302</a> and <a href="http://parts.igem.org/Part:BBa_K1465302" target="_blank">BBa_K1465302</a>. You can find a schematic illustration of our created BioBrick <a href="http://parts.igem.org/Part:BBa_K1465307" target="_blank">BBa_K1465307</a> in Figure 2B. |
</p> | </p> | ||
</div> | </div> | ||
Line 90: | Line 96: | ||
<div id="text"> | <div id="text"> | ||
<h6>α-acetolactate synthase</h6> | <h6>α-acetolactate synthase</h6> | ||
- | <p>We took the coding sequence of the gene of the α-acetolactate synthase (AlsS) from <i>B. subtilis</i> from the BioBrick <a href="http://parts.igem.org/Part:BBa_K539627" target="_blank">BBa_K539627</a>. | + | <p>We took the coding sequence of the gene of the α-acetolactate synthase (AlsS) from <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Notebook/Organisms#B.subtilis" target="_blank"><i>B. subtilis</i></a> from the BioBrick <a href="http://parts.igem.org/Part:BBa_K539627" target="_blank">BBa_K539627</a>. |
- | <br>This protein is responsible for the conversion of pyruvate into 2-acetolactate ( | + | <br>This protein is responsible for the conversion of pyruvate into 2-acetolactate (Figure 1). |
<center> | <center> | ||
<div class="element" style="margin:10px; padding:10px; width:550px;"> | <div class="element" style="margin:10px; padding:10px; width:550px;"> | ||
Line 99: | Line 105: | ||
<tr><td>Name</td><td>α-acetolactate synthase (AlsS)</td><td><i>alsS</i></td></tr> | <tr><td>Name</td><td>α-acetolactate synthase (AlsS)</td><td><i>alsS</i></td></tr> | ||
<tr><td>Length</td><td>554 aa</td><td>1,662 bp</td></tr> | <tr><td>Length</td><td>554 aa</td><td>1,662 bp</td></tr> | ||
- | <tr><td>Mass</td><td> | + | <tr><td>Mass</td><td>62,004 Da</td><td> -- </td></tr> |
</table> | </table> | ||
</div> | </div> | ||
Line 110: | Line 116: | ||
<div id="text"> | <div id="text"> | ||
<h6>Ketol-acid reductoisomerase</h6> | <h6>Ketol-acid reductoisomerase</h6> | ||
- | <p>We took the coding sequence of the gene of the ketol-acid reductoisomerase (IlvC) from <i>E. coli</i> (<a href="http://parts.igem.org/Part:BBa_K539621" target="_blank">BBa_K539621</a>). | + | <p>We took the coding sequence of the gene of the ketol-acid reductoisomerase (IlvC) from <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Notebook/Organisms#E.coli" target="_blank"><i>E. coli</i></a> (<a href="http://parts.igem.org/Part:BBa_K539621" target="_blank">BBa_K539621</a>). |
- | <br>This protein converts 2-acetolactate into 2,3-dihydroxyisovalerate ( | + | <br>This protein converts 2-acetolactate into 2,3-dihydroxyisovalerate (Figure 1). |
<center> | <center> | ||
<div class="element" style="margin:10px; padding:10px; width:550px;"> | <div class="element" style="margin:10px; padding:10px; width:550px;"> | ||
- | <font size="2" style="text-align:left;"><b>Table | + | <font size="2" style="text-align:left;"><b>Table 2:</b> General information about the ketol-acid reductoisomerase (IlvC) (<a href="#UniProt">UniProt</a>)</font> |
<table style="background-color:transparent; cellspacing=3;"> | <table style="background-color:transparent; cellspacing=3;"> | ||
<tr><th></th><th>Protein</th><th>Gene</th></tr> | <tr><th></th><th>Protein</th><th>Gene</th></tr> | ||
<tr><td>Name</td><td>ketol-acid reductoisomerase (IlvC)</td><td><i>ilvC</i></td></tr> | <tr><td>Name</td><td>ketol-acid reductoisomerase (IlvC)</td><td><i>ilvC</i></td></tr> | ||
<tr><td>Length</td><td>491 aa</td><td>1,473 bp</td></tr> | <tr><td>Length</td><td>491 aa</td><td>1,473 bp</td></tr> | ||
- | <tr><td>Mass</td><td>54 | + | <tr><td>Mass</td><td>54,069 Da</td><td> -- </td></tr> |
</table> | </table> | ||
</div> | </div> | ||
Line 131: | Line 137: | ||
<h6>Dihydroxyacid dehydratase</h6> | <h6>Dihydroxyacid dehydratase</h6> | ||
<p>We took the coding sequence of the gene of the dihydroxyacid dehydratase (IlvD) from <i>E. coli</i> from <a href="http://parts.igem.org/Part:BBa_K539626" target="_blank">BBa_K539626</a>. | <p>We took the coding sequence of the gene of the dihydroxyacid dehydratase (IlvD) from <i>E. coli</i> from <a href="http://parts.igem.org/Part:BBa_K539626" target="_blank">BBa_K539626</a>. | ||
- | <br>This protein is responsible for the conversion of of 2,3-dihydroxyisovalerate into 2-ketoisovalerate ( | + | <br>This protein is responsible for the conversion of of 2,3-dihydroxyisovalerate into 2-ketoisovalerate (Figure 1). |
<center> | <center> | ||
<div class="element" style="margin:10px; padding:10px; width:550px;"> | <div class="element" style="margin:10px; padding:10px; width:550px;"> | ||
- | <font size="2" style="text-align:left;"><b>Table | + | <font size="2" style="text-align:left;"><b>Table 3:</b> General information about the dihydroxyacid dehydratase (IlvD) (<a href="#UniProt">UniProt</a>)</font> |
<table style="background-color:transparent; cellspacing=3;"> | <table style="background-color:transparent; cellspacing=3;"> | ||
<tr><th></th><th>Protein</th><th>Gene</th></tr> | <tr><th></th><th>Protein</th><th>Gene</th></tr> | ||
<tr><td>Name</td><td>dihydroxyacid dehydratase (IlvD)</td><td><i>ilvD</i></td></tr> | <tr><td>Name</td><td>dihydroxyacid dehydratase (IlvD)</td><td><i>ilvD</i></td></tr> | ||
<tr><td>Length</td><td>616 aa</td><td>1,848 bp</td></tr> | <tr><td>Length</td><td>616 aa</td><td>1,848 bp</td></tr> | ||
- | <tr><td>Mass</td><td>65 | + | <tr><td>Mass</td><td>65,532 Da</td><td> -- </td></tr> |
</table> | </table> | ||
</div> | </div> | ||
Line 150: | Line 156: | ||
<div id="text"> | <div id="text"> | ||
<h6>α-ketoisovalerate decarboxylase</h6> | <h6>α-ketoisovalerate decarboxylase</h6> | ||
- | <p>We took the coding sequence of the gene of the α-ketoisovalerate decarboxylase (KivD) from <i>L. lactis</i> from <a href="http://parts.igem.org/Part:BBa_K539742" target="_blank">BBa_K539742</a>. | + | <p>We took the coding sequence of the gene of the α-ketoisovalerate decarboxylase (KivD) from <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Notebook/Organisms#L.lactis" target="_blank"><i>L. lactis</i></a> from <a href="http://parts.igem.org/Part:BBa_K539742" target="_blank">BBa_K539742</a>. |
- | <br>This protein catalyzes the reaction from 2-ketoisovalerate into isobutyraldehyde ( | + | <br>This protein catalyzes the reaction from 2-ketoisovalerate into isobutyraldehyde (Figure 1). |
<center> | <center> | ||
<div class="element" style="margin:10px; padding:10px; width:600px;"> | <div class="element" style="margin:10px; padding:10px; width:600px;"> | ||
- | <font size="2" style="text-align:left;"><b>Table | + | <font size="2" style="text-align:left;"><b>Table 4:</b> General information about the α-ketoisovalerate decarboxylase (KivD) (<a href="#UniProt">UniProt</a>)</font> |
<table style="background-color:transparent; cellspacing=3;"> | <table style="background-color:transparent; cellspacing=3;"> | ||
<tr><th></th><th>Protein</th><th>Gene</th></tr> | <tr><th></th><th>Protein</th><th>Gene</th></tr> | ||
<tr><td>Name</td><td>α-ketoisovalerate decarboxylase (KivD)</td><td><i>kivD</i></td></tr> | <tr><td>Name</td><td>α-ketoisovalerate decarboxylase (KivD)</td><td><i>kivD</i></td></tr> | ||
<tr><td>Length</td><td>548 aa</td><td>1,644 bp</td></tr> | <tr><td>Length</td><td>548 aa</td><td>1,644 bp</td></tr> | ||
- | <tr><td>Mass</td><td>60 | + | <tr><td>Mass</td><td>60,947 Da</td><td> -- </td></tr> |
</table> | </table> | ||
</div> | </div> | ||
Line 169: | Line 175: | ||
<div class="element" style="margin:10px 10px 10px 10px; padding:10px 10px 10px 10px"> | <div class="element" style="margin:10px 10px 10px 10px; padding:10px 10px 10px 10px"> | ||
<div id="text"> | <div id="text"> | ||
- | <h6> | + | <h6>alcohol dehydrogenase</h6> |
<p>We designed a new part which contains the coding sequence of the adhA gene from <i>L. Lactis</i> (<a href="http://parts.igem.org/Part:BBa_K1465301" target="_blank">BBa_K1465301</a>). | <p>We designed a new part which contains the coding sequence of the adhA gene from <i>L. Lactis</i> (<a href="http://parts.igem.org/Part:BBa_K1465301" target="_blank">BBa_K1465301</a>). | ||
- | <br>This protein is responsible for the conversion of isobutyraldehyde into isobutanol ( | + | <br>This protein is responsible for the conversion of isobutyraldehyde into isobutanol (Figure 1). |
<center> | <center> | ||
<div class="element" style="margin:10px; padding:10px; width:550px;"> | <div class="element" style="margin:10px; padding:10px; width:550px;"> | ||
- | <font size="2" style="text-align:left;"><b>Table | + | <font size="2" style="text-align:left;"><b>Table 5:</b> General information about the alcohol dehydrogenase (AdhA) (<a href="#UniProt">UniProt</a>)</font> |
<table style="background-color:transparent; cellspacing=3;"> | <table style="background-color:transparent; cellspacing=3;"> | ||
<tr><th></th><th>Protein</th><th>Gene</th></tr> | <tr><th></th><th>Protein</th><th>Gene</th></tr> | ||
- | <tr><td>Name</td><td> | + | <tr><td>Name</td><td>alcohol dehydrogenase 1 (AdhA)</td><td><i>adhA</i></td></tr> |
<tr><td>Length</td><td>340 aa</td><td>1,020 bp</td></tr> | <tr><td>Length</td><td>340 aa</td><td>1,020 bp</td></tr> | ||
- | <tr><td>Mass</td><td>35 | + | <tr><td>Mass</td><td>35,776 Da</td><td> -- </td></tr> |
</table> | </table> | ||
</div> | </div> | ||
Line 187: | Line 193: | ||
</div> | </div> | ||
</div> | </div> | ||
+ | |||
+ | |||
+ | <br> | ||
+ | |||
+ | <!-- Button begin --> | ||
+ | |||
+ | <div id="main_menue" style="margin-left:320px; height:80px"> | ||
+ | <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/Isobutanol/Theory"style="color:#000000"> | ||
+ | <div class="main_menueButton" style="width:100px"> | ||
+ | <p class="buttoncenter"><font color="#FFFFFF">Overview</font></p> | ||
+ | </div> | ||
+ | </a> | ||
+ | <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/Isobutanol/Isobutanol"style="color:#000000"> | ||
+ | <div class="main_menueButton" style="width:100px"> | ||
+ | <p class="buttoncenter"><font color="#FFFFFF">Isobutanol</font></p> | ||
+ | </div> | ||
+ | </a> | ||
+ | <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/Isobutanol/GeneticalApproach"style="color:#000000"> | ||
+ | <div class="main_menueButtonActual" style="width:180px"> | ||
+ | <p class="buttoncenter"><font color="#FFFFFF">Genetical Approach</font></p> | ||
+ | </div> | ||
+ | </a> | ||
+ | </div> | ||
+ | |||
+ | <!-- Button end --> | ||
+ | |||
Latest revision as of 10:03, 2 December 2014
Module III - Isobutanol production
Genetical Approach
Isobutanol is an important substance for industry. No known organism can produce isobutanol or other branched-chain alcohols. Atsumi et al. presented a metabolic pathway to produce isobutanol in Escherichia coli. The pathway is shown in Figure 1.
The shown pathway starts with pyruvate and results in isobutanol. We also start with pyruvate which is generated from 3-phosphogylcerate in the glycolysis of the cell. For this 3-phosphogylcerate is required which is generated in the Calvin cycle of the CO2 fixation in module II. The steps in the conversion of pyruvate to 2-ketoisovalerate can be executed by proteins existing in E. coli (IlvIH, IlvC and IlvD). Since E. coli also has an alcohol dehydrogenase (AdhE), the only required protein for the isobutanol production is a ketoisovalerate decarboxylase. This protein (KivD) can be received from Lactococcus lactis. The pathway shown in Figure 1 is already an improvement of the described way. The native protein IlvIH is replaced by the AlsS from Bacillus subtilis to increase the isobutanol production. (Atsumi et al.)As we want to integrate this pathway in E.coli we used and improved existing BioBricks from the iGEM team NCTU Formosa 2011/2012. We used gene coding sequences of four out of five required proteins for the isobutanol production.
These genes are
- alsS (BBa_K539627)
- ilvC (BBa_K539621)
- ilvD (BBa_K539626)
- kivD (BBa_K539742)
As you can see in Figure 2 we have two approaches for our producing system. We want to reproduce the pathway from iGEM team NCTU Formosa without their temperature system (BBa_K887002). In their system the first three proteins (AlsS, IlvC and IlvD) were generated while E.coli is incubated in a 37°C environment. During this the non-toxic intermediate 2-ketoisovalerate is accumulated. By shifting the temperature to a 30°C environment the missing KivD can be generated because of the non-active repressor. Together with the AdhE from E. coli KivD converts 2-ketoisovalerate into isobutanol.
In Figure 2A you can find our first approach where we also used the AdhE from E. coli. We disclaim the temperature system and put all coding sequences in a row behind a promoter separated by the RBS in front of each gene. We used Gibson as the cloning method for the part BBa_K1465302. For cloning the ptac upstream the part BBa_K1465302, the prefix insertion BioBrick assembly was used. This idea resulted in the part BBa_K1465306.
We found out, that the AdhA from L. Lactis is the best alcohol dehydrogenase in literature (Atsumi et al., 2010). We wanted to increase the production of isobutanol by cloning the adhA gene downstream of our producing pathway. By Gibson we designed a new part (BBa_K1465301) which contains the coding sequence of the adhA gene from L. Lactis and is combined with the RBS BBa_B0034. Afterwards we did several BioBrick assemblies for combining the parts BBa_K731500, BBa_K1465302 and BBa_K1465302. You can find a schematic illustration of our created BioBrick BBa_K1465307 in Figure 2B.
Involved Proteins
In the following section you will find some information about the five proteins involved in the isobutanol production.
α-acetolactate synthase
We took the coding sequence of the gene of the α-acetolactate synthase (AlsS) from B. subtilis from the BioBrick BBa_K539627.
This protein is responsible for the conversion of pyruvate into 2-acetolactate (Figure 1).
Protein | Gene | |
---|---|---|
Name | α-acetolactate synthase (AlsS) | alsS |
Length | 554 aa | 1,662 bp |
Mass | 62,004 Da | -- |
Ketol-acid reductoisomerase
We took the coding sequence of the gene of the ketol-acid reductoisomerase (IlvC) from E. coli (BBa_K539621).
This protein converts 2-acetolactate into 2,3-dihydroxyisovalerate (Figure 1).
Protein | Gene | |
---|---|---|
Name | ketol-acid reductoisomerase (IlvC) | ilvC |
Length | 491 aa | 1,473 bp |
Mass | 54,069 Da | -- |
Dihydroxyacid dehydratase
We took the coding sequence of the gene of the dihydroxyacid dehydratase (IlvD) from E. coli from BBa_K539626.
This protein is responsible for the conversion of of 2,3-dihydroxyisovalerate into 2-ketoisovalerate (Figure 1).
Protein | Gene | |
---|---|---|
Name | dihydroxyacid dehydratase (IlvD) | ilvD |
Length | 616 aa | 1,848 bp |
Mass | 65,532 Da | -- |
α-ketoisovalerate decarboxylase
We took the coding sequence of the gene of the α-ketoisovalerate decarboxylase (KivD) from L. lactis from BBa_K539742.
This protein catalyzes the reaction from 2-ketoisovalerate into isobutyraldehyde (Figure 1).
Protein | Gene | |
---|---|---|
Name | α-ketoisovalerate decarboxylase (KivD) | kivD |
Length | 548 aa | 1,644 bp |
Mass | 60,947 Da | -- |
alcohol dehydrogenase
We designed a new part which contains the coding sequence of the adhA gene from L. Lactis (BBa_K1465301).
This protein is responsible for the conversion of isobutyraldehyde into isobutanol (Figure 1).
Protein | Gene | |
---|---|---|
Name | alcohol dehydrogenase 1 (AdhA) | adhA |
Length | 340 aa | 1,020 bp |
Mass | 35,776 Da | -- |
References
-
Atsumi S, Hanai T, Liao JC., 2008. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. In: Nature 451, 86–89.
-
Atsumi S, Wu TY, Eckl EM, Hawkins SD, Buelter T, Liao JC. 2010. Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison three aldehyde reductase/alcohol dehydrogenase genes. In: Appl. Microbiol. Biotechnol 85, 651–657
-
UniProt, version 10/2014