Team:Aachen/PolicyPractices/Economics
From 2014.igem.org
(→WatsOn) |
AZimmermann (Talk | contribs) (→Economical View) |
||
(79 intermediate revisions not shown) | |||
Line 11: | Line 11: | ||
'''Make the world a better place - Open access for scientific progress''' | '''Make the world a better place - Open access for scientific progress''' | ||
- | In the center of every economic analysis are the customers and their needs and desires. Every commercial company is interested | + | In the center of every economic analysis are the customers and their needs and desires. Every commercial company is interested in satisfying and dealing with all customer needs for better sales figures, in order to maintain regular clientele. Both measures aim for '''higher financial profits'''. On the global seller’s market of technical laboratory equipment there is a permanent competition between the existing providers. On the one hand, this competition depends on the mentioned financial profits and, on the other hand, on the following factors: technical improvement followed by price wars. Due to globalization products from the Asian market are increasingly competing with the American and European market resulting in intensive price wars. On the Asian market personnel and production costs are much less and thus the same product can be sold with higher profits. Some of these products are less expensive but are often of lower quality, too. However, for a company it is important to chose a good '''price-performance ratio''' because this factor always catch customers and influence their purchase decision. |
- | + | ||
- | + | ||
- | + | ||
<center> | <center> | ||
- | {{Team:Aachen/ | + | {{Team:Aachen/FigureFloat|TeamAachen DiagrammThermoScientific.png|title=Costs and operating expenses for companies producing technical laboratory equipment|subtitle=(Thermo Fisher Scientific, 2013)|width=600px}} |
</center> | </center> | ||
- | + | Take a look at cost calculations for technical laboratory equipment including development, production, transport, warehousing and sale. Usually, you will find that in this branche there are really low costs for research and development, restruction and amorthilisation. In contrast, general expenses and costs for administartion, revenues, and sales are high. Lastly, financial profit is a big cost point cause businesses have to be self-financing. In general, these factors are making '''technical equipment for labs really expensive''', and therefore unaffordable for low-budget instutions. | |
- | + | One of the world's biggest producers of laboratory products is [http://www.thermofisher.com/en/home.html Thermo Fisher Scientific]. They also offer photometers and other equipment. The image on the left side shows all costs and operating expenses listed in the [http://ir.thermofisher.com/investors/financial-information/annual-reports/default.aspx Annual Report 2013] from Thermo Fisher Scientific. | |
- | To make our | + | |
+ | We follow a strategy to circumvent unnecessary costs for customers by realizing a '''social vision'''. In accordance with the '''principle of open source''' including both open hardware and open software, information where to get the necessary components, quantities, step-by-step technical construction manuals and circuit diagrams are '''published online for free'''. Potential customers can follow our provided instructions and acquire information from our [https://2014.igem.org/Team:Aachen/Notebook/Engineering Engineering page]. Therefore, our profit is not of financial nature but is instead based on recognition and on motivating other iGEM teams and companies to '''spread the idea of open hardware''', too. In accordance with the motto "Do It Yourself!" (DIY) we offer low-budget versions through reducing costs at as many points as possible, except for the basic costs for material. Customers with a little technical dexterity, motivation to try something new and who are keen to experiment can follow our step-by-step construction manual to create their own custom-made devices. | ||
+ | <center> | ||
+ | {{Team:Aachen/Figure|Aachen Social Vision.png|title=Social vision as economical strategy for creating access to low-budget technical equipment.|width=800px}} | ||
+ | </center> | ||
+ | To make our product more user-friendly, we '''considered offering device kits'''. When offering kits customers do not have to order a lot of separate device parts from different suppliers. However, this introduces the disadvantage of a '''loss of flexibility'''. Yet it is very important to have the '''opportunity to modify''' the devices, for example, by choosing alternative parts or including add-ons, because research requiring novel techniques advances quickly in the natural sciences. With our concept, improvements and adjustments are thus immediately realizable. | ||
- | + | Lastly, we want to mention that our vision is limited because it is incompatible with capitalism which rules the global market. Generally, companies are profit oriented and follow a different economical strategy than our iGEM team. As '''non-profit concept''', our idea is therefore limited to a group of customers with lower budgets. | |
Line 32: | Line 34: | ||
<span class="anchor" id="economicswatson"></span> | <span class="anchor" id="economicswatson"></span> | ||
- | The measurement device [https://2014.igem.org/Team:Aachen/Project/Measurement_Device ''WatsOn''] for our [https://2014.igem.org/Team:Aachen/Project/2D_Biosensor 2D biosensor] | + | The measurement device [https://2014.igem.org/Team:Aachen/Project/Measurement_Device ''WatsOn''] for our [https://2014.igem.org/Team:Aachen/Project/2D_Biosensor 2D biosensor] has been designed according to our social vision. So far, we have not found comparable devices on the market. Here, we definitely take a pioneer role. Following our DIY concept, you can create your own ''WatsOn'' for '''just $310''' using the given [https://2014.igem.org/Team:Aachen/Notebook/Engineering/WatsOn construction manual]. All components for putting a ''WatsOn'' together are easily available all over the world using the following links. |
<center> | <center> | ||
'''All needed components, their quantities and prices for creating your own ''WatsOn''''' | '''All needed components, their quantities and prices for creating your own ''WatsOn''''' | ||
Line 97: | Line 99: | ||
| 1||cupboard button||0.98||1.24||0.98||1.24 | | 1||cupboard button||0.98||1.24||0.98||1.24 | ||
|- class="sortbottom" style="background:#cfe2f4; border-top:2px #808080 solid; font-weight:bold" | |- class="sortbottom" style="background:#cfe2f4; border-top:2px #808080 solid; font-weight:bold" | ||
- | | -|| | + | | -||Total||-||-||243.88||309.70 |
|} | |} | ||
</center> | </center> | ||
- | Such low prices with the | + | Such low prices in combination with the DIY concept opens a grand new customer market and lets our device '''compete with commercially available products'''. Especially in developing counties our ''WatsOn'' could help improve health infrastructure since high cost are eliminated as an obstacle. The low material costs and the high technical flexibility turn ''WatsOn'' into an adequate device for developing countries, community labs and the biohacking scene. Particularly for developing countries, such a low-budget device poses a '''good alternative to regular devices''' for detecting pathogens and other bacteria. With our device, we create access to modern technology and working methods for everybody. |
- | + | ||
- | + | ||
<center> | <center> | ||
{{Team:Aachen/Figure|Aachen_Team_WatsOn_3.png|title=''WatsOn's'' self-made concept makes it available for low budged institutions|width=800px}} | {{Team:Aachen/Figure|Aachen_Team_WatsOn_3.png|title=''WatsOn's'' self-made concept makes it available for low budged institutions|width=800px}} | ||
</center> | </center> | ||
+ | For ''WatsOn'', we offer both the construction manual and the image processing software ''Measurarty''. Since we do not offer everything in one kit, it is possible for the user to modify the device and software according to personal needs such as '''adjusting the range od detectable microorganisms'''. By engineering the ''Cellocks'' detection of other pathogens is theoretically possible. However, please always mind the respective [https://2014.igem.org/Team:Aachen/Safety safety aspects] when dealing with GMOs and human pathogens. Moverover, it is possible to detect not just the fluorescence of GFP and iLOV. Just by changing the filters and/or LEDs, the device can be modified such that the fluorescence '''other regularly used reporter proteins like YFP, CFP or RFP can be detected'''. | ||
- | |||
{{Team:Aachen/BlockSeparator}} | {{Team:Aachen/BlockSeparator}} | ||
Line 115: | Line 115: | ||
<span class="anchor" id="economicsodf"></span> | <span class="anchor" id="economicsodf"></span> | ||
- | One of our greater visions we share with the synthetic biology community is that everyone interested in biological work should have access to basic laboratory equipment. With our OD/F Device we | + | One of our greater visions we share with the synthetic biology community is that everyone interested in biological work should have access to basic laboratory equipment. With our OD/F Device, we '''offer a low-cost solution for community labs, biohackers and high schools'''. |
- | + | <center> | |
+ | {{Team:Aachen/FigureFloat|Netdiagramm_ODF_Device.png|title= Advantages and disadvantes of our OD/F Device compared to commercially available devices|subtitle=We compared the devices in portability, affordability, reliability, user-friendliness, capabilities, precision and accuracy.|width=400px}} | ||
+ | </center> | ||
- | + | For an economic analysis, we deal with F Device and the OD Device separately. The reason for this is the bad comparability to commercial devices. Latter do not combine the measurument of fluorescence and OD while being in the same product class of small, portable devices. With our OD/F Device, we offer a '''solution to combine both measurement methods in one mobile device'''. With the instructions provided by us it possible to either build an OD Device or an F Device or an OD/F Device. We are offering a high degree of flexibility by enabling the user to modify our device according to own ideas and wishes. | |
- | + | Both portability and low cost are two out of several factors that we heavily place importance on. Commercially obtainable spectrophotometers like [http://www.opticsplanet.com/unico-model-s-1205-spectrophotometer-5-nm-bandpass.html UNICO S-1205], for example, cost $1.250 or more, and can measure optical density only. On top of that, they are heavy, hardly portable and therefore not easy to handle. However, they are able to work with a broader range of wavelengths and show higher accuracy and precision. For measuring fluorescence, devices such as [http://www.moleculardevices.com/systems/microplate-readers/fluorescent-readers/gemini-xps plate readers] are available. Yet comparing a commercial device with our F Device is really difficult because we could not find one that is both portable and able to measure at 480 nm. | |
+ | |||
+ | To compare our device to another commercially availalbe system we chose the OD-meter [http://www.laboratory-equipment.com/laboratory-equipment/cell-density-meter.php CO 8000]. This device measures the OD at 600 nm, too, but costs almost $920. Our [https://2014.igem.org/Team:Aachen/OD/F_device OD/F Device] can measure OD as well as fluorescence for less than [https://2014.igem.org/Team:Aachen/Notebook/Engineering/ODF#diy $60] as shown in the chart on the left. The '''cost savings''' here are round about '''$850''', money that could definetly be invested into other research projects or equipment instead. Nonetheless, one weakness of our device is the low reliability compared to commercial devices. This is due to use of low cost materials. Prices are given in both Euro and US-Dollar for better accountability and easy conversion. | ||
<center> | <center> | ||
Line 137: | Line 141: | ||
| 1||[http://www.dx.com/p/uno-r3-development-board-microcontroller-mega328p-atmega16u2-compat-for-arduino-blue-black-215600#.VDzwV9ysWBp Arduino UNO R3]||9.17||11.65||9.17||11.65 | | 1||[http://www.dx.com/p/uno-r3-development-board-microcontroller-mega328p-atmega16u2-compat-for-arduino-blue-black-215600#.VDzwV9ysWBp Arduino UNO R3]||9.17||11.65||9.17||11.65 | ||
|- | |- | ||
- | | 1||[http://www.mouser. | + | | 1||[http://www.mouser.de/ProductDetail/ams/TSL235R-LF/?qs=14HO7rLZPQsjmBHaoYCzkA%3D%3D TSL 235R]||2.47||3.14||2.47||3.14 |
|- | |- | ||
- | | 1||[http://www.dx.com/p/16-x-2-character-lcd-display-module-with-blue-backlight-121356 | + | | 1||[http://www.dx.com/p/16-x-2-character-lcd-display-module-with-blue-backlight-121356 Display 16x2]||2.58||3.28||2.58||3.28 |
|- | |- | ||
| 1||[http://www.dx.com/p/lcd1602-adapter-board-w-iic-i2c-interface-black-works-with-official-arduino-boards-216865#.VDzxHNysWBp LCD Display to I2C]||1.57||1.99||1.57||1.99 | | 1||[http://www.dx.com/p/lcd1602-adapter-board-w-iic-i2c-interface-black-works-with-official-arduino-boards-216865#.VDzxHNysWBp LCD Display to I2C]||1.57||1.99||1.57||1.99 | ||
Line 151: | Line 155: | ||
| 1||[http://www.dx.com/p/syb-170-mini-breadboard-for-diy-project-red-140101#.VDzyudysWBo small breadboard]||1.98||2.51||1.98||2.51 | | 1||[http://www.dx.com/p/syb-170-mini-breadboard-for-diy-project-red-140101#.VDzyudysWBo small breadboard]||1.98||2.51||1.98||2.51 | ||
|- | |- | ||
- | | 1||[http://www.dx.com/p/universal-ac-charger-w-dual-usb-output-for-iphone-ipad-ipod-white-us-plug-244893 | + | | 1||[http://www.dx.com/p/universal-ac-charger-w-dual-usb-output-for-iphone-ipad-ipod-white-us-plug-244893 power supply]||2.20||2.80||2.20||2.80 |
|- | |- | ||
| 1||cuvette holder (3D print service of your choice)||6.44||8.18||6.44||8.18 | | 1||cuvette holder (3D print service of your choice)||6.44||8.18||6.44||8.18 | ||
Line 157: | Line 161: | ||
| 1||3 mm acrylic glas (black)||7.98||10.14||7.98||10.14 | | 1||3 mm acrylic glas (black)||7.98||10.14||7.98||10.14 | ||
|- | |- | ||
- | | 1||[http://www.dx.com/p/prototype-universal-printed-circuit-board-breadboard-golden-10-piece-pack-143913 | + | | 1||[http://www.dx.com/p/prototype-universal-printed-circuit-board-breadboard-golden-10-piece-pack-143913 Prototype Universal Printed Circuit Board]||2.27||2.88||2.27||2.88 |
|- | |- | ||
- | | 1||[http://www.dx.com/p/2-54mm-1x40-pin-breakaway-straight-male-header-10-piece-pack-144191#. | + | | 1||[http://www.dx.com/p/2-54mm-1x40-pin-breakaway-straight-male-header-10-piece-pack-144191#.VEGRF2d_tGg Male Headers]||2.14||2.72||2.14||2.72 |
+ | |- style="border-top: 2px solid #808080;" | ||
+ | | 1||[http://www.mouser.de/ProductDetail/Dialight/550-2505F/?qs=0KZIkTEbAAvqMAW7suDOXg== LED 600 nm]||0.94||1.19||0.94||1.19 | ||
|- | |- | ||
- | + | ! -!!Total OD!!-!!-!! 46.01 !! 58.45 | |
- | + | ||
- | + | ||
- | + | ||
- | ! Total OD !!!!!! | + | |
|- | |- | ||
| 1||[http://www.leds.de/Low-Mid-Power-LEDs/SuperFlux-LEDs/Nichia-Superflux-LED-blau-3lm-100-NSPBR70BSS.html LED 480 nm]||0.99||1.26||0.99||1.26 | | 1||[http://www.leds.de/Low-Mid-Power-LEDs/SuperFlux-LEDs/Nichia-Superflux-LED-blau-3lm-100-NSPBR70BSS.html LED 480 nm]||0.99||1.26||0.99||1.26 | ||
|- | |- | ||
- | ! Total F !!!! | + | ! -!!Total F!!-!!-!! 46.06 !! 58.52 |
- | |- | + | |- style="border-top: 2px solid #808080;;" |
- | | 1||[http://www.mouser.de/ProductDetail/Dialight/550-2505F/?qs=0KZIkTEbAAvqMAW7suDOXg== LED 600nm]||0. | + | | 1||[http://www.mouser.de/ProductDetail/Dialight/550-2505F/?qs=0KZIkTEbAAvqMAW7suDOXg== LED 600nm]||0.94||1.19||0.94||1.19 |
|- | |- | ||
| 1||[http://www.leds.de/Low-Mid-Power-LEDs/SuperFlux-LEDs/Nichia-Superflux-LED-blau-3lm-100-NSPBR70BSS.html LED 480 nm]||0.99||1.26||0.99||1.26 | | 1||[http://www.leds.de/Low-Mid-Power-LEDs/SuperFlux-LEDs/Nichia-Superflux-LED-blau-3lm-100-NSPBR70BSS.html LED 480 nm]||0.99||1.26||0.99||1.26 | ||
|- | |- | ||
- | ! Total OD/F !!!!!! | + | | 1||cuvette holder (3D print service of your choice)||6.44||8.18||6.44||8.18 |
+ | |- | ||
+ | ! -!!Total OD/F!!-!!-!! 53.44 !! 67.89 | ||
|- | |- | ||
|} | |} | ||
</center> | </center> | ||
- | + | To build your own OD/F Device, all you have to do is order the required parts listed above, invest some time and have a little technical dexterity. This DIY aspect could also have a positive learning effect, for example, for students in schools, universities and other educational institutions. | |
<center> | <center> | ||
Line 186: | Line 190: | ||
</center> | </center> | ||
- | In our | + | In our cooperations with the [https://2014.igem.org/Team:Aachen/Collaborations/Kaiser-Karls-Gymnasium Kaiser-Karls-Gymnasium] and with [https://2014.igem.org/Team:Aachen/Collaborations/Neanderlab NEAnderLab], one of our target groups '''already gathered first experience''' using our OD/F Device. This proves that our device is suitable for school everday life. When working with the schools, we got a lot of positive feedback from the instructors as well as the students. |
+ | In summary, in our OD/F Device, we see a piece of equipment to measure OD and fluorescence, two quantities regularly used in biology, that is open source and perfectly fit for low-budget instutions such as schools, universities, community labs and the biohacking scene. | ||
+ | |||
+ | |||
+ | {{Team:Aachen/BlockSeparator}} | ||
+ | |||
+ | ==References== | ||
+ | |||
+ | Annual report. (2013). Thermo Fisher Scientific. Available at http://ir.thermofisher.com/investors/financial-information/annual-reports/default.aspx. | ||
- | |||
- | |||
- | |||
{{Team:Aachen/Footer}} | {{Team:Aachen/Footer}} |
Latest revision as of 01:46, 18 October 2014
|
|
|
|