Team:HZAU-China/Input
From 2014.igem.org
m |
|||
(7 intermediate revisions not shown) | |||
Line 142: | Line 142: | ||
<!-- logo start here --> | <!-- logo start here --> | ||
<div id="logo-left"> | <div id="logo-left"> | ||
- | <a href="https://igem.org/Team.cgi?year=2014&team_name=HZAU-China"><img src="https://static.igem.org/mediawiki/2014/ | + | <a href="https://igem.org/Team.cgi?year=2014&team_name=HZAU-China"><img src="https://static.igem.org/mediawiki/2014/4/4c/Hzau-home-lllogo.png" alt="HZAU-China" /></a> |
</div> | </div> | ||
<!-- logo end here --> | <!-- logo end here --> | ||
Line 158: | Line 158: | ||
<li class="selected dropdown"><a href="https://2014.igem.org/Team:HZAU-China/Project">Project</a> | <li class="selected dropdown"><a href="https://2014.igem.org/Team:HZAU-China/Project">Project</a> | ||
<ul> | <ul> | ||
+ | <li><a href="https://2014.igem.org/Team:HZAU-China/Design"><span>-</span>Overview</a></li> | ||
<li><a href="https://2014.igem.org/Team:HZAU-China/Background"><span>-</span>Background</a></li> | <li><a href="https://2014.igem.org/Team:HZAU-China/Background"><span>-</span>Background</a></li> | ||
- | |||
<li><a href="https://2014.igem.org/Team:HZAU-China/Input"><span>-</span>Input module</a></li> | <li><a href="https://2014.igem.org/Team:HZAU-China/Input"><span>-</span>Input module</a></li> | ||
<li><a href="https://2014.igem.org/Team:HZAU-China/Processing"><span>-</span>Processing module</a></li> | <li><a href="https://2014.igem.org/Team:HZAU-China/Processing"><span>-</span>Processing module</a></li> | ||
Line 171: | Line 171: | ||
<li><a href="https://2014.igem.org/Team:HZAU-China/Construction"><span>-</span>Construction</a></li> | <li><a href="https://2014.igem.org/Team:HZAU-China/Construction"><span>-</span>Construction</a></li> | ||
<li><a href="https://2014.igem.org/Team:HZAU-China/Characterization"><span>-</span>Characterization</a></li> | <li><a href="https://2014.igem.org/Team:HZAU-China/Characterization"><span>-</span>Characterization</a></li> | ||
+ | <li><a href="https://2014.igem.org/Team:HZAU-China/Help"><span>-</span>Help each other</a></li> | ||
<li><a href="https://2014.igem.org/Team:HZAU-China/Protocol"><span>-</span>Protocol</a></li> | <li><a href="https://2014.igem.org/Team:HZAU-China/Protocol"><span>-</span>Protocol</a></li> | ||
- | <li><a href="https://2014.igem.org/Team:HZAU-China/Labnotes"><span>-</span>Labnotes</a></li> | + | <li><a href="https://2014.igem.org/Team:HZAU-China/Labnotes"><span>-</span>Labnotes</a></li> |
</ul> | </ul> | ||
</li> | </li> | ||
Line 243: | Line 244: | ||
<div class="offset-by-one columns"> | <div class="offset-by-one columns"> | ||
<h3 style="text-align:center">Input Module</h3> | <h3 style="text-align:center">Input Module</h3> | ||
- | <p class="highlighttext">The input module is in charge of the expression of recombinase according to the received signals. When there’s no input signal, there is leaky expression. Such leakage may unexpectedly alter the function of the processing module. So we need | + | <p class="highlighttext">The input module is in charge of the expression of recombinase according to the received signals. When there’s no input signal, there is leaky expression. Such leakage may unexpectedly alter the function of the processing module. So we need <span style="font-weight:bold;">tighter regulation</span>. We cloned the recombinase under the control of the inducible riboregulators (Callura <span style="font-style:italic;">et al.</span>, 2012; Bonnet <span style="font-style:italic;">et al.</span>, 2013). </p> |
<h5>Site-specific recombination</h5> | <h5>Site-specific recombination</h5> | ||
- | <p class="highlighttext">The site-specific recombination system we used in our project is Cre recombinase meditated inversion system. We chose two mutant loxP sites, lox66 and lox71, instead of the wild-type loxP sites. After the first Cre-mediated recombination, one wild-type loxP site and one double mutant loxP site are generated. The double mutant loxP site, lox72, exhibits a very low affinity | + | <p class="highlighttext">The site-specific recombination system we used in our project is Cre recombinase meditated inversion system. We chose two mutant loxP sites, lox66 and lox71, instead of the wild-type loxP sites. After the first Cre-mediated recombination, one wild-type loxP site and one double mutant loxP site are generated. The double mutant loxP site, lox72, exhibits a very low affinity to Cre recombinase. So it can be regarded as a unidirectional one, or an irreversible one.</p> |
<img src="https://static.igem.org/mediawiki/2014/3/31/Hzau-project-1.png" width="300px" class="img-center"/> | <img src="https://static.igem.org/mediawiki/2014/3/31/Hzau-project-1.png" width="300px" class="img-center"/> | ||
Line 255: | Line 256: | ||
<p class="highlighttext">We incorporated a coherent feedforward loop into our input module. This motif can provide pulse filtration in which short pulses of signal will not generate a response but persistent signals will generate a response after short delay. So we utilized this property to filter noise.</p> | <p class="highlighttext">We incorporated a coherent feedforward loop into our input module. This motif can provide pulse filtration in which short pulses of signal will not generate a response but persistent signals will generate a response after short delay. So we utilized this property to filter noise.</p> | ||
<img src="https://static.igem.org/mediawiki/2014/e/e2/Hzau-project-3.png" width="500px" class="img-center"/> | <img src="https://static.igem.org/mediawiki/2014/e/e2/Hzau-project-3.png" width="500px" class="img-center"/> | ||
+ | <div class="clear"></div> | ||
+ | <div class="divider"></div> | ||
<h5>References</h5> | <h5>References</h5> | ||
<p class="highlighttext">Siuti, P., Yazbek, J., & Lu, T. K. (2013). Synthetic circuits integrating logic and memory in living cells. Nature biotechnology, 31(5), 448-452.</p> | <p class="highlighttext">Siuti, P., Yazbek, J., & Lu, T. K. (2013). Synthetic circuits integrating logic and memory in living cells. Nature biotechnology, 31(5), 448-452.</p> | ||
<p class="highlighttext">Callura, J. M., Cantor, C. R., & Collins, J. J. (2012). Genetic switchboard for synthetic biology applications. Proceedings of the National Academy of Sciences, 109(15), 5850-5855.</p> | <p class="highlighttext">Callura, J. M., Cantor, C. R., & Collins, J. J. (2012). Genetic switchboard for synthetic biology applications. Proceedings of the National Academy of Sciences, 109(15), 5850-5855.</p> | ||
- | + | ||
- | + | ||
</div> | </div> | ||
</div> | </div> |
Latest revision as of 03:20, 18 October 2014
<!DOCTYPE html>
Input module
Input Module
The input module is in charge of the expression of recombinase according to the received signals. When there’s no input signal, there is leaky expression. Such leakage may unexpectedly alter the function of the processing module. So we need tighter regulation. We cloned the recombinase under the control of the inducible riboregulators (Callura et al., 2012; Bonnet et al., 2013).
Site-specific recombination
The site-specific recombination system we used in our project is Cre recombinase meditated inversion system. We chose two mutant loxP sites, lox66 and lox71, instead of the wild-type loxP sites. After the first Cre-mediated recombination, one wild-type loxP site and one double mutant loxP site are generated. The double mutant loxP site, lox72, exhibits a very low affinity to Cre recombinase. So it can be regarded as a unidirectional one, or an irreversible one.
Riboregulator
In a riboregulator, the cis-repressed RNA is like a lock, and the trans-activating RNA is like a key. When they reach a certain concentration, the trans-activating RNA is designed to target and hybridize to the stem-loop of the crRNA message. The resulting RNA duplex causes a conformational change in the crRNA that unfolds the stem-loop, exposing the RBS and permitting translation. In this way we can achieve a post-transcriptional control.
Coherent feedforward loop
We incorporated a coherent feedforward loop into our input module. This motif can provide pulse filtration in which short pulses of signal will not generate a response but persistent signals will generate a response after short delay. So we utilized this property to filter noise.
References
Siuti, P., Yazbek, J., & Lu, T. K. (2013). Synthetic circuits integrating logic and memory in living cells. Nature biotechnology, 31(5), 448-452.
Callura, J. M., Cantor, C. R., & Collins, J. J. (2012). Genetic switchboard for synthetic biology applications. Proceedings of the National Academy of Sciences, 109(15), 5850-5855.