Team:HZAU-China/Design

From 2014.igem.org

(Difference between revisions)
m
 
(15 intermediate revisions not shown)
Line 142: Line 142:
         <!-- logo start here -->
         <!-- logo start here -->
         <div id="logo-left">
         <div id="logo-left">
-
             <a href="https://igem.org/Team.cgi?year=2014&team_name=HZAU-China"><img src="https://static.igem.org/mediawiki/2014/b/bb/Hazuteamlogo918.png" alt="HZAU-China" /></a>
+
             <a href="https://igem.org/Team.cgi?year=2014&team_name=HZAU-China"><img src="https://static.igem.org/mediawiki/2014/4/4c/Hzau-home-lllogo.png" alt="HZAU-China" /></a>
         </div>
         </div>
         <!-- logo end here -->
         <!-- logo end here -->
Line 158: Line 158:
                 <li class="selected dropdown"><a href="https://2014.igem.org/Team:HZAU-China/Project">Project</a>
                 <li class="selected dropdown"><a href="https://2014.igem.org/Team:HZAU-China/Project">Project</a>
    <ul>  
    <ul>  
 +
                        <li><a href="https://2014.igem.org/Team:HZAU-China/Design"><span>-</span>Overview</a></li>
                         <li><a href="https://2014.igem.org/Team:HZAU-China/Background"><span>-</span>Background</a></li>
                         <li><a href="https://2014.igem.org/Team:HZAU-China/Background"><span>-</span>Background</a></li>
-
<li><a href="https://2014.igem.org/Team:HZAU-China/Design"><span>-</span>Design overview</a></li>
 
<li><a href="https://2014.igem.org/Team:HZAU-China/Input"><span>-</span>Input module</a></li>
<li><a href="https://2014.igem.org/Team:HZAU-China/Input"><span>-</span>Input module</a></li>
<li><a href="https://2014.igem.org/Team:HZAU-China/Processing"><span>-</span>Processing module</a></li>
<li><a href="https://2014.igem.org/Team:HZAU-China/Processing"><span>-</span>Processing module</a></li>
Line 171: Line 171:
<li><a href="https://2014.igem.org/Team:HZAU-China/Construction"><span>-</span>Construction</a></li>
<li><a href="https://2014.igem.org/Team:HZAU-China/Construction"><span>-</span>Construction</a></li>
<li><a href="https://2014.igem.org/Team:HZAU-China/Characterization"><span>-</span>Characterization</a></li>
<li><a href="https://2014.igem.org/Team:HZAU-China/Characterization"><span>-</span>Characterization</a></li>
 +
                        <li><a href="https://2014.igem.org/Team:HZAU-China/Help"><span>-</span>Help each other</a></li>
                         <li><a href="https://2014.igem.org/Team:HZAU-China/Protocol"><span>-</span>Protocol</a></li>
                         <li><a href="https://2014.igem.org/Team:HZAU-China/Protocol"><span>-</span>Protocol</a></li>
-
                         <li><a href="https://2014.igem.org/Team:HZAU-China/Labnotes"><span>-</span>Labnotes</a></li>  
+
                         <li><a href="https://2014.igem.org/Team:HZAU-China/Labnotes"><span>-</span>Labnotes</a></li>    
                     </ul>
                     </ul>
                 </li>
                 </li>
Line 220: Line 221:
<section id="pagetitle-wrapper">
<section id="pagetitle-wrapper">
     <div class="pagetitle-content">     
     <div class="pagetitle-content">     
-
     <h2>Design overview</h2>   
+
     <h2>Overview</h2>   
     </div>
     </div>
</section>
</section>
Line 231: Line 232:
         <li><a href="https://2014.igem.org/Team:HZAU-China">Home</a></li>
         <li><a href="https://2014.igem.org/Team:HZAU-China">Home</a></li>
             <li>Project</li>
             <li>Project</li>
-
    <li>Design overview</li>
+
    <li>Overview</li>
         </ul>
         </ul>
     </div>
     </div>
Line 242: Line 243:
         <div class="eleven columns">  
         <div class="eleven columns">  
         <div class="offset-by-one columns">
         <div class="offset-by-one columns">
-
<h3 style="text-align:center">Design Overview</h3>   
+
<h3 style="text-align:center">Overview</h3>   
-
              <p class="highlighttext">Our system of the rewirable circuit is composed of three modules, including an input module, a processing module, and an output module. The input module acts as a sensor and a trigger. It receive the environment signal and expresses recombinase to rewire the processing module. The processing module is a small gene regulatory network with some specific sites for DNA recombination that lead to rearranging the connection of parts. In order to confirm the functions, we need an output module to monitor the real-time processes. Here we use fluorescence intensity as an indicator. This is the first step. Once its function is confirmed, we can use other functional proteins as output to solve real world problems.</p>
+
<p class="highlighttext">
-
<h5>To mimic the intricacies of nature, we kept the following concepts in mind when designing the circuits:</h5>
+
Cells sense the environment, process information, and make response to stimuli. To make cells work well in complex natural environments, lots of processes have to be preset to react to various signals. However, when well-characterized modules are combined to construct higher order systems, unpredictable behaviors often occur because of the interplay between modules. Another significant problem is that complex integrated systems composed of numerous parts may cause cell overload.</p>
-
<li style="margin-left:20px;color: #222;font-family: Arial,"Times New Roman",Georgia,Helvetica,Arial,sans-serif;font-size:13px;">Simplicity vs. Concision;</li>
+
<p class="highlighttext">
-
<li style="margin-left:20px;color: #222;font-family: Arial,"Times New Roman",Georgia,Helvetica,Arial,sans-serif;">Complexity vs. Intricacy;</li>
+
We proposed an elegant method to design higher order systems. Instead of merely combining different functional modules, we constructed one integrated processing module with fewer parts by utilizing the common structures between modules. The circuit we designed is a rewirable one and the topological structure of the processing module can be altered to <span style="font-weight:bold;"> adapt </span>to environmental change. The basic idea is to rewire the connections between parts and devices to <span style="font-weight:bold;">implement multiple functions</span> with the help of the site-specific recombination systems.</p>
-
<li style="margin-left:20px;color: #222;font-family: Arial,"Times New Roman",Georgia,Helvetica,Arial,sans-serif;">Adaptability vs. Versatility;</li>
+
<p class="highlighttext">
-
<li style="margin-left:20px;color: #222;font-family: Arial,"Times New Roman",Georgia,Helvetica,Arial,sans-serif;">Functionality vs. Modality.</li>
+
Based on the design principle we put forward, we built two circuits to verify our idea. Each circuit has three modules including an input module, a processing module, and an output module. The input module receives environmental signal and triggers the rewiring of the processing module. The output module monitors real-time processes using fluorescence intensity.</p>
-
<p class="highlighttext"><span style="font-style:italic;"> </span></p>
+
<p class="highlighttext">
-
</div>
+
Our design approach may lead to a revolutionary step towards <span style="font-weight:bold;">system integration</span> in synthetic biology. Potential fields of application include organism development, living therapeutics and environment improvement.</p>
-
<img src=""  width="" class="img-center"/>
+
 
 +
<div class="clear"></div>
 +
<div class="divider"></div>
 +
 
         </div>
         </div>
         </div>
         </div>

Latest revision as of 02:52, 18 October 2014

<!DOCTYPE html> 2014HZAU-China

Overview

Overview

Cells sense the environment, process information, and make response to stimuli. To make cells work well in complex natural environments, lots of processes have to be preset to react to various signals. However, when well-characterized modules are combined to construct higher order systems, unpredictable behaviors often occur because of the interplay between modules. Another significant problem is that complex integrated systems composed of numerous parts may cause cell overload.

We proposed an elegant method to design higher order systems. Instead of merely combining different functional modules, we constructed one integrated processing module with fewer parts by utilizing the common structures between modules. The circuit we designed is a rewirable one and the topological structure of the processing module can be altered to adapt to environmental change. The basic idea is to rewire the connections between parts and devices to implement multiple functions with the help of the site-specific recombination systems.

Based on the design principle we put forward, we built two circuits to verify our idea. Each circuit has three modules including an input module, a processing module, and an output module. The input module receives environmental signal and triggers the rewiring of the processing module. The output module monitors real-time processes using fluorescence intensity.

Our design approach may lead to a revolutionary step towards system integration in synthetic biology. Potential fields of application include organism development, living therapeutics and environment improvement.

Contacts
  • No.1, Shizishan Street, Hongshan District
    Wuhan, Hubei Province
    430070 P.R.China
  • Wechat : hzauigem
  • QQ Group : 313297095
  • YouTube : hzauigem