Team:Bielefeld-CeBiTec/Project/rMFC/ReactorSystem

From 2014.igem.org

(Difference between revisions)
 
(6 intermediate revisions not shown)
Line 17: Line 17:
<html>
<html>
-
<h1> Module I - reverse microbial fuel cell (rMFC) </h1>
+
<h1> Module I - Reverse Microbial Fuel Cell (rMFC) </h1>
<!-- Button begin -->
<!-- Button begin -->
-
<div id="main_menue" style="margin-left:75px; height:80px">
+
<div id="main_menue" style="margin-left:130px; height:80px">
<a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/rMFC/Theory"style="color:#000000">
<a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/rMFC/Theory"style="color:#000000">
   <div class="main_menueButton" style="width:100px">
   <div class="main_menueButton" style="width:100px">
Line 27: Line 27:
   </div>  
   </div>  
</a>
</a>
 +
 +
                        <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/rMFC/GeneticalApproach"style="color:#000000">
 +
  <div class="main_menueButton" style="width:180px">
 +
              <p class="buttoncenter"><font color="#FFFFFF">Genetical Approach</font></p>
 +
  </div>
 +
</a>
 +
<a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/rMFC/ReactorSystem"style="color:#000000">
<a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/rMFC/ReactorSystem"style="color:#000000">
Line 45: Line 52:
   </div>  
   </div>  
</a>
</a>
 +
<!--
                         <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/rMFC/Cultivation"style="color:#000000">
                         <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/rMFC/Cultivation"style="color:#000000">
   <div class="main_menueButton" style="width:110px">
   <div class="main_menueButton" style="width:110px">
Line 50: Line 58:
   </div>  
   </div>  
</a>
</a>
-
 
+
-->
-
                        <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/rMFC/GeneticalApproach"style="color:#000000">
+
-
  <div class="main_menueButton" style="width:180px">
+
-
              <p class="buttoncenter"><font color="#FFFFFF">Genetical Approach</font></p>
+
-
  </div>
+
-
</a>
+
-
 
+
                         <!--a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/rMFC/Outlook"style="color:#000000">
                         <!--a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/rMFC/Outlook"style="color:#000000">
   <div class="main_menueButton" style="width:100px">
   <div class="main_menueButton" style="width:100px">
Line 62: Line 64:
   </div>  
   </div>  
</a-->
</a-->
 +
 +
                        <br><br><a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/rMFC"style="color:#000000">
 +
  <div class="main_menueButton" style="width:90px; float:right;margin-right:140px">
 +
              <p class="buttoncenter"><font color="#FFFFFF">Results</font></p>
 +
  </div>
 +
</a>
</div>
</div>
<!-- Button End -->
<!-- Button End -->
-
 
+
<br>
<div class="element" style="margin:10px 10px 10px 10px; padding:10px 10px 10px 10px">  
<div class="element" style="margin:10px 10px 10px 10px; padding:10px 10px 10px 10px">  
Line 72: Line 80:
   <h6 id="DesignReactorSystem">Design of a electrobiochemical reactor system</h6>
   <h6 id="DesignReactorSystem">Design of a electrobiochemical reactor system</h6>
     <p>To perform our cultivation experiments under well defined conditions it was necessary to design a new   
     <p>To perform our cultivation experiments under well defined conditions it was necessary to design a new   
-
bioreactor system. Besides the typically controlled parameters in bioreactors like the oxygen partial pressure, pH-signal, temperature and other parameters, it was indispensable to have the possibility to energize the reactor with a defined current. That is why we decided to build an H-cell reactor. This kind of reactor consits of two compartments which are connected by a glass flange. It is possible to fix a membrane in the middle of the flange connection so that the two compartments are seperated. We used a cation selective Nafion&reg; membrane which allowed the divison of the two compartments into an anode and cathode space. <br>
+
bioreactor system. Besides the typically controlled parameters in bioreactors like the oxygen partial pressure, pH-signal, temperature and other parameters, it was indispensable to have the possibility to energize the reactor with a defined current. That is why we decided to build an H-cell reactor. This kind of reactor consits of two compartments which are connected by a glass flange. It is possible to fix a membrane in the middle of the flange connection so that the two compartments are seperated. We used a cation selective Nafion&reg; membrane which allowed the division of the two compartments into an anode and cathode space. <br>
Figure 1 shows schematically the layout of our design.
Figure 1 shows schematically the layout of our design.
Line 85: Line 93:
The H-cell reactor could be used for batch fermentations and is constructed for the electron transfer via a mediator.<br>
The H-cell reactor could be used for batch fermentations and is constructed for the electron transfer via a mediator.<br>
-
That is why we considered an alternative reactor design. The other reactor concept is named "scalable flow cell reactor" (SFC) and allows an continous mode of operation. In this reactor type the electron transfer must be realized by direct electron transfer. That is possible if the cells stay in direct contact to the electrode material. The electron transfer is carried out by cytochromes in the outer membrane. That is why we focused on different types of mediators and the expression of key type cytochromes. The Layout of the SFC is shown in Figure 2.
+
That is why we considered an alternative reactor design. The other reactor concept is named scalable "flow cell reactor" (FCR) and allows a continuous mode of operation. In this reactor type the electron transfer must be realized by direct electron transfer. That is possible if the cells stay in direct contact to the electrode material. The electron transfer is carried out by cytochromes in the outer membrane. That is why we focused on different types of mediators and the expression of key type cytochromes. The Layout of the SFC is shown in Figure 2.
Line 92: Line 100:
<div class="element" style="width:500px">  
<div class="element" style="width:500px">  
       <a href="https://static.igem.org/mediawiki/2014/f/f0/Bielefeld-CeBiTec_2014-08-31_Fig._10_-_kontinuierlicher_Fermenter.png" target="_blank"><img src="https://static.igem.org/mediawiki/2014/f/f0/Bielefeld-CeBiTec_2014-08-31_Fig._10_-_kontinuierlicher_Fermenter.png" width="500px"></a><br>
       <a href="https://static.igem.org/mediawiki/2014/f/f0/Bielefeld-CeBiTec_2014-08-31_Fig._10_-_kontinuierlicher_Fermenter.png" target="_blank"><img src="https://static.igem.org/mediawiki/2014/f/f0/Bielefeld-CeBiTec_2014-08-31_Fig._10_-_kontinuierlicher_Fermenter.png" width="500px"></a><br>
-
       <font size="2" style="text-align:left;"><b>Figure 2</b>: Planed design for a flow cell reactor (FCR). <b>1</b> porous cathode material <b>2</b> sealing ring <b>3</b> cation selective Nafion&reg; membrane <b>4</b> hose nippel <b>5</b> porous anode material.</font>
+
       <font size="2" style="text-align:left;"><b>Figure 2</b>: Planed design for a flow cell reactor (SFC). <b>1</b> porous cathode material <b>2</b> sealing ring <b>3</b> cation selective Nafion&reg; membrane <b>4</b> hose nippel <b>5</b> porous anode material.</font>
</center>
</center>
Line 98: Line 106:
   </div>
   </div>
</div>
</div>
 +
 +
<br>
 +
<!-- Button begin -->
 +
 +
<div id="main_menue" style="margin-left:130px; height:80px">
 +
<a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/rMFC/Theory"style="color:#000000">
 +
  <div class="main_menueButton" style="width:100px">
 +
              <p class="buttoncenter"><font color="#FFFFFF">Overview</font></p>
 +
  </div>
 +
</a>
 +
 +
                        <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/rMFC/GeneticalApproach"style="color:#000000">
 +
  <div class="main_menueButton" style="width:180px">
 +
              <p class="buttoncenter"><font color="#FFFFFF">Genetical Approach</font></p>
 +
  </div>
 +
</a>
 +
 +
 +
<a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/rMFC/ReactorSystem"style="color:#000000">
 +
  <div class="main_menueButtonActual" style="width:150px">
 +
              <p class="buttoncenter"><font color="#FFFFFF">Reactor system</font></p>
 +
  </div>
 +
</a>
 +
 +
                        <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/rMFC/MeasurementSystem"style="color:#000000">
 +
  <div class="main_menueButton" style="width:200px">
 +
              <p class="buttoncenter"><font color="#FFFFFF">Measurement System</font></p>
 +
  </div>
 +
</a>
 +
 +
                        <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/rMFC/Mediators"style="color:#000000">
 +
  <div class="main_menueButton" style="width:100px">
 +
              <p class="buttoncenter"><font color="#FFFFFF">Mediators</font></p>
 +
  </div>
 +
</a>
 +
<!--
 +
                        <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/rMFC/Cultivation"style="color:#000000">
 +
  <div class="main_menueButton" style="width:110px">
 +
              <p class="buttoncenter"><font color="#FFFFFF">Cultivation</font></p>
 +
  </div>
 +
</a>
 +
-->
 +
                        <!--a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/rMFC/Outlook"style="color:#000000">
 +
  <div class="main_menueButton" style="width:100px">
 +
              <p class="buttoncenter"><font color="#FFFFFF">Outlook</font></p>
 +
  </div>
 +
</a-->
 +
 +
</div>
 +
 +
<!-- Button End -->
 +
 +
<div class="element">  
<div class="element">  

Latest revision as of 03:51, 18 October 2014


Module I - Reverse Microbial Fuel Cell (rMFC)


Design of a electrobiochemical reactor system

To perform our cultivation experiments under well defined conditions it was necessary to design a new bioreactor system. Besides the typically controlled parameters in bioreactors like the oxygen partial pressure, pH-signal, temperature and other parameters, it was indispensable to have the possibility to energize the reactor with a defined current. That is why we decided to build an H-cell reactor. This kind of reactor consits of two compartments which are connected by a glass flange. It is possible to fix a membrane in the middle of the flange connection so that the two compartments are seperated. We used a cation selective Nafion® membrane which allowed the division of the two compartments into an anode and cathode space.
Figure 1 shows schematically the layout of our design.


Figure 1: Planed design for a H-cell reactor: 1 cathode space with sparger for aeration and a heater coil, 2 anode space with a heater coil 3 caps for the reactor glass bodies which provide several fittings for electrodes, heating, pH- adjustment and sampling, 4 cation selective Nafion® membrane, 5 sealing ring 6 autoclavable high-temp clamp
The H-cell reactor could be used for batch fermentations and is constructed for the electron transfer via a mediator.
That is why we considered an alternative reactor design. The other reactor concept is named scalable "flow cell reactor" (FCR) and allows a continuous mode of operation. In this reactor type the electron transfer must be realized by direct electron transfer. That is possible if the cells stay in direct contact to the electrode material. The electron transfer is carried out by cytochromes in the outer membrane. That is why we focused on different types of mediators and the expression of key type cytochromes. The Layout of the SFC is shown in Figure 2.

Figure 2: Planed design for a flow cell reactor (SFC). 1 porous cathode material 2 sealing ring 3 cation selective Nafion® membrane 4 hose nippel 5 porous anode material.


References
  • Park, D. H.,Laivenieks, M., Guettler, M. V., Jain, M. K. & Zeikus, J.G. (1999) Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolic production. In: Appl. Environ. Microbiol., 65 (7), pp. 2912 - 2917.