Team:Tokyo-NoKoGen/protocol

From 2014.igem.org

(Difference between revisions)
 
(2 intermediate revisions not shown)
Line 75: Line 75:
h2 {
h2 {
     font-size:20px;
     font-size:20px;
-
     font-family:Georgia Bold;
+
     font-family:Georgia;
     text-decoration:none;
     text-decoration:none;
   }
   }
Line 141: Line 141:
<p>
<p>
LB medium and LB agar gel
LB medium and LB agar gel
-
Medium for cultivation of E. coli
+
Medium for cultivation of <i>E. coli</i>
</p>
</p>
Line 172: Line 172:
<p>Transformation</p>
<p>Transformation</p>
-
<h3>Inserting plasmid into <i>E. coli</i></h3>
+
<h3>Transformation of <i>E. coli</i></h3>
1; Incubate frozen competent cell (DH5α) on the ice for a few minutes. <br>
1; Incubate frozen competent cell (DH5α) on the ice for a few minutes. <br>
2; Add 1~5 μL of plasmid to competent cell (DH5α) on the ice.<br>
2; Add 1~5 μL of plasmid to competent cell (DH5α) on the ice.<br>
Line 184: Line 184:
   
   
1; Pick up single colony from agar plate and cultivate it in 1.5 mL LB medium containing appropriate antibiotic overnight at 37°C.<br>
1; Pick up single colony from agar plate and cultivate it in 1.5 mL LB medium containing appropriate antibiotic overnight at 37°C.<br>
-
2; Move the culture medium to 1.5 mL tube.<br>
+
2; Transfer the culture medium to 1.5 mL tube.<br>
-
3; Centrifuge for 5 seconds at 15,000×g and 4 °C and discard supernatant.<br>
+
3; Centrifuge for 5 seconds at 15,000×g at 4 °C and discard supernatant.<br>
4; Add 100 μL Solution 1 to the pellet and resuspend and incubate for 3 minutes.<br>
4; Add 100 μL Solution 1 to the pellet and resuspend and incubate for 3 minutes.<br>
5; Add 100 μL Solution 2, invert tube gently 5 times and incubate for 3 minutes.<br>
5; Add 100 μL Solution 2, invert tube gently 5 times and incubate for 3 minutes.<br>
Line 202: Line 202:
19; 40 μL of supernatant into new 500 μL tube.<br><br>
19; 40 μL of supernatant into new 500 μL tube.<br><br>
-
<p>Restriction enzyme digestion of DNA</p>
+
<p>Restriction enzyme digestion</p>
-
<h3>Cleavage of insert DNA from plasmid</h3>
+
<h3>Digestion of insert DNA in plasmid</h3>
1; Mix DNA and restriction enzyme (Table).<br>
1; Mix DNA and restriction enzyme (Table).<br>
2; Incubate for 2 hours at 37°C.<br>
2; Incubate for 2 hours at 37°C.<br>
Line 230: Line 230:
</table><br><br>
</table><br><br>
-
<h3>Confirmation and separation of digested DNA</h3>
+
<h3>Confirmation and purification of digested DNA</h3>
<h4>Preparation of agar gel</h4>
<h4>Preparation of agar gel</h4>
1; Add 1 g of agar to 100 mL of 1×TAE.<br>
1; Add 1 g of agar to 100 mL of 1×TAE.<br>
Line 242: Line 242:
2; Load DNA ladder and DNA sample mixed with loading dye on agar gel.<br>
2; Load DNA ladder and DNA sample mixed with loading dye on agar gel.<br>
3; Electrophorese for 20 minutes at 100 V.<br>
3; Electrophorese for 20 minutes at 100 V.<br>
-
4; Stain gel by Sybr SafeTM Gel Stain (Invitrogen).<br>
+
4; Stain gel by SYBR Safe<sup>TM</sup> Gel Stain (Invitrogen).<br>
5; Visualize the band of DNA using UV light.<br>
5; Visualize the band of DNA using UV light.<br>
6; Confirm the length of digested DNA.<br><br>
6; Confirm the length of digested DNA.<br><br>
Line 311: Line 311:
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;∞</td>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;∞</td>
</table>-->
</table>-->
-
Fig 1. <br><br>
+
Fig 1. PCR<br><br>
Line 466: Line 466:
<img src="https://static.igem.org/mediawiki/2014/d/d9/Noko14_Pro-310.png"><br>
<img src="https://static.igem.org/mediawiki/2014/d/d9/Noko14_Pro-310.png"><br>
 +
Fig 3. 310 seq
<!--<table border="1">
<!--<table border="1">
<td width="60"></td>
<td width="60"></td>

Latest revision as of 06:24, 17 October 2014

Protocols

LB medium and LB agar gel Medium for cultivation of E. coli

LB medium (1 L)

1; Add about 900 mL of distilled water to beaker.
2; Add 25 g of LB medium, Miller(MERCK) and stir.
3; Add distilled water up to 1 L and take LB medium to media bottle.
4; Autoclave for 20 min at 120°C.

LB agar gel (1 L)

1; Prepare LB medium without autoclave (Steps 1-3 of 1L scale of LB medium).
2; Add 15 g of agar and stirrer bar.
3; Autoclave for 20 minutes at 120°C.
4; Stir and cool LB medium with agar, add appropriate antibiotic (table).
5; Pour LB medium (Step 4) in plate and cool down in clean bench.

f.c.
Ampicillin 100 μg/mL
Kanamycin 50 μg/mL
Chloramphenicol 30 μg/mL
Tetlacycline 11 μg/mL


Transformation

Transformation of E. coli

1; Incubate frozen competent cell (DH5α) on the ice for a few minutes.
2; Add 1~5 μL of plasmid to competent cell (DH5α) on the ice.
3; Incubate for 20 – 30 minutes on the ice.
4; Incubate for 45 seconds at 42°C.
5; Add 1 mL LB medium and cultivate for 1 hour at 37°C.
6; Spread culture medium on LB agar plate with appropriate antibiotic.

Plasmid extraction

Preparation of plasmid extracted from E. coli

1; Pick up single colony from agar plate and cultivate it in 1.5 mL LB medium containing appropriate antibiotic overnight at 37°C.
2; Transfer the culture medium to 1.5 mL tube.
3; Centrifuge for 5 seconds at 15,000×g at 4 °C and discard supernatant.
4; Add 100 μL Solution 1 to the pellet and resuspend and incubate for 3 minutes.
5; Add 100 μL Solution 2, invert tube gently 5 times and incubate for 3 minutes.
6; Add 100 μL Solution 3, invert tube 5 times and incubate for 3 minutes.
8; Add 200 μL Solution 4 and invert tube 5 times and centrifuge for 3 minutes at 15,000×g and 4 °C.
10; Take supernatant to new 1.5 mL tube and centrifuge for 3 minutes at 15,000×g and 4 °C.
11; Vortex Bind mix for 1 min and add 800 μL Bind mix to new 1.5 mL tube.
12; Add 400 μL supernatant after centrifugation (Step 10) to tube containing Bind mix (Step 11) and mix.
13; Incubate for 3 minutes, centrifuge for 3 seconds at 5,000×g and 4 °C, and discard supernatant.
14; Add 1 mL of 50% ethanol and resuspend.
15; Centrifuge for 3 seconds at 5,000×g and 4 °C and discard supernatant.
16; Repeat wash (Steps 14-15).
17; Dry pellet for a few minuet under a vacuum to remove residual ethanol.
18; Add 50 μL nuclease-free water or TE buffer and incubate for 3 minutes at 65°C.
19; Centrifuge for 3 minutes at 15,000×g and 4 °C.
19; 40 μL of supernatant into new 500 μL tube.

Restriction enzyme digestion

Digestion of insert DNA in plasmid

1; Mix DNA and restriction enzyme (Table).
2; Incubate for 2 hours at 37°C.
3; Incubate for 10 minutes at 65°C.
4; Confirm the band of DNA by agar gel electrophoresis.


reagent name volume
DNA
restriction enzyme A
restriction enzyme B
buffre MQ
5 μL
0.5 μL
0.5 μL
1.5 μL
7.5 μL
total 15 μL


Confirmation and purification of digested DNA

Preparation of agar gel

1; Add 1 g of agar to 100 mL of 1×TAE.
2; Boil and stir until solution is dissolved and clear.
3; Cool down, pour into container to set its shape.
4; Wait until gel dries.
5; Store gel in 1×TAE.


Agar gel electrophoresis

1; Place agar gel and pour 1×TAE in electrophoresis chamber.
2; Load DNA ladder and DNA sample mixed with loading dye on agar gel.
3; Electrophorese for 20 minutes at 100 V.
4; Stain gel by SYBR SafeTM Gel Stain (Invitrogen).
5; Visualize the band of DNA using UV light.
6; Confirm the length of digested DNA.

PCR

1; Add 25 μL of reagent solution (Table 1) to PCR tube.
2; Amplify target DNA with PCR program (Table 2).
3; Confirm the band of DNA by agar gel electrophoresis.

reagent name volume
primeSTAR® GXL DNA polymerase
5X GXL buffer
dNTP
template DNA
fowerd primer
reverse primer
MQ
0.5 μL
5 μL
2 μL
1 μL
1 μL
1 μL
14.5 μL
total 25 μL
Table 1

Fig 1. PCR

Gel purification

Purification of DNA from agar gel

GENECLEAN® II Kit(NaI、glass milk、NEW Wash)/Qbiogene

1; Cut the objective band in the agar gel after electrophoresis and stain with SYBR Safe.
2; Put the gel including objective DNA into 1.5 mL tube and measure the mass of that.
3; Add 2.5-3 fold volume NaI solution into the tube (Gel: NaI =1 mg : 1 μL ).
4; Incubate the gel at 50°C for 5 minute.
5; Add 10 μL of glass milk and vortex.
6; Incubate for 5 minutes and vortex per a minute.
7; Centrifuge for 5 seconds at 15,000×g and 4°C and discard the supernatant.
8; Add the 500μL of New Wash and resuspend.
9; Centrifuge for 5 seconds at 15,000×g and 4°C.
10; Repeat wash (Steps 8-9).
11; Dry the pellet for 5-10 minutes under vacuum.
12. Add 20 μL of nuclease-free water and resuspend.
13. Centrifuge for 5 seconds at 15,000×g and 25°C.
14. Transfer supernatant including objective DNA into new tube.

Ligation


Ligation inset DNA and vector
DNA Ligation kit Ver 2.1(SolutionⅠ)/Takara

1; Mix the insert DNA, vector and solution I (Table).
2; Incubation at 16°C for 30 minute.
3; Transform E. coli with ligation sample.

reagent name volume
insert DNA
vector
solution I
2 μL
2 μL
4 μL
total 8 μL


Colony PCR


Confirmation of insert DNA in plasmid, directly doing PCR on E. coli
1; Add 10 μL of reagent solution (Table 1) to PCR tube.
2; Pick up single colony from agar plate with tooth pick and sting replica plate (new LB agar plate).
3; Put and stir toothpick to reagent solution (Step 1).
4; Amplify insert DNA with PCR program (Table 2).
5; Electrophorese PCR sample with agar gel.
6; Check the band and length of insert DNA and decide the colony with insert DNA.

reagent name volume
fowerd primer
reverse primer
Go taq® Green Master Mix(Promega)
MQ
0.5 μL
0.5 μL
5 μL
4 μL
total 10 μL
Table 1

Fig 2.Colony PCR

Sequence analysis

Identification of insert DNA
*Preparation of PCR product
Big Dye® Terminator Cycle Sequencing Kit Ver. 3.1 (Premix, Buffer) / Applied Biosystems
1; Add reagent solution (Table 1) to PCR tube and amplify insert DNA with PCR program
(Table2). *Purification of PCR product and sequence analysis
Agencourt CleanSEQ® and 96 R ring Super Magnetic Plate® / Beckman Coulter
1; Add 10 μL of Agencourt CleanSEQ® 10 µL to PCR product.
2; Add 62 μL of 85% ethanol, mix and incubate for 3 minutes.
3; Incubate for 3 minutes on 96 R ring Super Magnetic Plate® and discard supernatant.
4; Add 100 μL of 85% ethanol and mix.
5; Incubate for 3 minutes on 96 R ring Super Magnetic Plate® and discard supernatant.
6; Repeat wash (Steps 4-5).
7; Dry for 10 minutes.
8; Add 40 μL nuclease-free water and mix.
9; Transfer 30μL of clear sample into a new plate for loading on the detector.
10; Load sample on sequencer and analyze.

reagent name volume
plasmid
primer
premix
buffer
MQ
3 μL
0.5 μL
0.5 μL
4 μL
12 μL
total 20 μL

Table 1


Fig 3. 310 seq