Team:Bielefeld-CeBiTec/Project/Isobutanol/Theory

From 2014.igem.org

(Difference between revisions)
 
(18 intermediate revisions not shown)
Line 16: Line 16:
</style>
</style>
-
<h1>Isobutanol</h1>
+
<h1>Module III - Isobutanol production</h1>
<!-- Button begin -->
<!-- Button begin -->
-
<div id="main_menue" style="margin-left:250px; height:80px">
+
<div id="main_menue" style="margin-left:320px; height:80px">
<a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/Isobutanol/Theory"style="color:#000000">
<a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/Isobutanol/Theory"style="color:#000000">
   <div class="main_menueButtonActual" style="width:100px">
   <div class="main_menueButtonActual" style="width:100px">
Line 34: Line 34:
<a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/Isobutanol/GeneticalApproach"style="color:#000000">
<a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/Isobutanol/GeneticalApproach"style="color:#000000">
   <div class="main_menueButton" style="width:180px">
   <div class="main_menueButton" style="width:180px">
-
               <p class="buttoncenter"><font color="#FFFFFF">Genetical approach</font></p>
+
               <p class="buttoncenter"><font color="#FFFFFF">Genetical Approach</font></p>
   </div>  
   </div>  
</a>
</a>
-
                         <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/Isobutanol/Outlook"style="color:#000000">
+
                         <br><br><a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/Isobutanol"style="color:#000000">
-
   <div class="main_menueButton" style="width:100px">
+
   <div class="main_menueButton" style="width:90px; float:right;margin-right:330px">
-
               <p class="buttoncenter"><font color="#FFFFFF">Outlook</font></p>
+
               <p class="buttoncenter"><font color="#FFFFFF">Results</font></p>
   </div>  
   </div>  
</a>
</a>
-
 
</div>
</div>
<!-- Button end -->
<!-- Button end -->
-
 
+
<br>
<div class="element" style="margin:10px 10px 10px 10px; padding:10px 10px 10px 10px">  
<div class="element" style="margin:10px 10px 10px 10px; padding:10px 10px 10px 10px">  
   <div id="text">
   <div id="text">
   <h6>Short summary</h6>
   <h6>Short summary</h6>
-
<div class="element" style="margin:30px 10px 30px 10px; padding:10px; width:150px; float:left;" >
+
<div class="element" style="margin:10px; padding:10px; width:150px; float:left;" >
     <img src="https://static.igem.org/mediawiki/2014/d/d7/Bielefeld_CeBiTec_2014-08-14_ecoliM3.jpg" width="150px" align="center">
     <img src="https://static.igem.org/mediawiki/2014/d/d7/Bielefeld_CeBiTec_2014-08-14_ecoliM3.jpg" width="150px" align="center">
</div>
</div>
-
     <p>Within the third module of our project the products of the carbon dioxide fixation will be used by the cell to produce the key metabolite pyruvate. Pyruvate can be converted in different products. We decided to introduce an isobutanol production pathway. For this we want to use and improve existing BioBricks (iGEM Team Formosa 2011/2012).
+
     <p>The aim of the third module of our project is the production of isobutanol in <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Notebook/Organisms#E.coli" target="_blank"><i>Escherichia coli</i></a>, which was already shown by <a href="#Atsumi2008">Atsumi et al.</a> The bacteria should use the products of the carbon dioxide fixation from module II to produce the key metabolite pyruvate. Pyruvate is then further used in metabolic pathways of the cell. Pyruvate is considered as a key metabolite because it can be used as a precursor for different industrially relevant products. <br> We decided to introduce an isobutanol production pathway which starts with pyruvate and is called 2-keto-acid, or Ehrlich, pathway (<a href="#Pamela2012">Peralta-Yahya et al., 2012</a>, <a href="#Atsumi2008">Atsumi et al., 2008</a>). For this we want to use and improve existing BioBricks from iGEM team NCTU Formosa 2011/2012.  
-
<br>
+
-
The modularity of BioBricks enables the exchange of a variety of producing systems. The producing pathway of variable high value products derived from pyruvate can be implemented. Hence, products like isoprene, putrescine or even antibiotics are possible candidates with industrial application.
+
<br><br>
<br><br>
-
<a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/Isobutanol">Here</a> you will find our results of the production of Isobutanol.
+
Different production pathways of variable high value products derive from pyruvate. For further purpose the modularity of BioBricks can be used to enable the exchange of those producing systems. Other, than isobutanol, thinkable products would be isoprene, putrescine or even antibiotics.
 +
<br><br>
 +
<a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/Isobutanol">Here</a> you will find our results of the isobutanol production.
<br>
<br>
-
You can find more information about the <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/Isobutanol/Theory">underlying theory</a>, our <a href ="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/Isobutanol/GeneticalApproach">genetical approach</a> and an <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/Isobutanol/Outlook">outlook</a> on our wiki</p>
+
You can find more information about <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/Isobutanol/Isobutanol">isobutanol</a>, our <a href ="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/Isobutanol/GeneticalApproach">genetical approach</a> and an <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/Isobutanol/Outlook">outlook</a> on our wiki.
 +
</p>
   </div>
   </div>
</div>
</div>
-
<!--center>
 
-
<div class="element" style="margin:10px; padding:10px; width:150px;">
 
-
    <img src="https://static.igem.org/mediawiki/2014/d/d7/Bielefeld_CeBiTec_2014-08-14_ecoliM3.jpg" width="150px" align="center">
 
-
</div>
 
-
</center-->
 
-
<div class="element" style="margin:10px 10px 10px 10px; padding:10px 10px 10px 10px">
 
-
  <div id="text">
 
-
  <h6>Product Synthesis</h6>
 
-
    <p>The third module benefits from the two modules before. <i>E. coli</i> has gained energy equivalents and reduction equivalents to generate pyruvate by binding carbon dioxide. By using the Calvin cycle the product of our CO2 fixation is pyruvate. This substance is now used as the initial point for the product synthesis. Pyruvate is a starting point of the producing pathways of a variety of high value products like isobutanol, isoprene, putrescine or even antibiotics. Our project implements the producing pathway of isobutanol by using and improving existing BioBricks (iGEM Team Formosa 2011/2012).
 
-
<br><br>
 
-
<center>
 
-
<div class="element" style="margin:10px; padding:10px; text-align:center; width:600px">
 
-
      <a href="https://static.igem.org/mediawiki/2014/e/ed/Bielefeld-CeBiTec_2014-10-12_module_III.png" target="_blank"><img src="https://static.igem.org/mediawiki/2014/e/ed/Bielefeld-CeBiTec_2014-10-12_module_III.png" width="600px"></a><br>
 
-
<font size="2" style="text-align:left;"><b>Figure 1</b>: Schematic illustration of module III</font>
 
-
</div>
 
-
</center>
 
-
The product synthesis can be changed through the modularity of BioBricks so that variable high value products derived from pyruvate can be implemented in the future. </p>
+
<br>
-
  </div>
+
<!-- Button begin -->
 +
 
 +
<div id="main_menue" style="margin-left:320px; height:80px">
 +
<a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/Isobutanol/Theory"style="color:#000000">
 +
  <div class="main_menueButtonActual" style="width:100px">
 +
              <p class="buttoncenter"><font color="#FFFFFF">Overview</font></p>
 +
  </div>
 +
</a>
 +
<a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/Isobutanol/Isobutanol"style="color:#000000">
 +
  <div class="main_menueButton" style="width:100px">
 +
              <p class="buttoncenter"><font color="#FFFFFF">Isobutanol</font></p>
 +
  </div>
 +
</a>
 +
<a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/Isobutanol/GeneticalApproach"style="color:#000000">
 +
  <div class="main_menueButton" style="width:180px">
 +
              <p class="buttoncenter"><font color="#FFFFFF">Genetical Approach</font></p>
 +
  </div>
 +
</a>
</div>
</div>
 +
 +
<!-- Button end -->
<div class="element" style="margin:10px 10px 10px 10px; padding:10px 10px 10px 10px">  
<div class="element" style="margin:10px 10px 10px 10px; padding:10px 10px 10px 10px">  
   <div id="text">
   <div id="text">
-
   <h6>Isobutanol</h6>
+
   <h6>References</h6>
-
    <p>Isobutanol is an amino-acid-based alcohol which is an organic substance.</p>
+
<ul>
-
<center>
+
<li id="Atsumi2008">
-
<div class="element" style="margin:10px; padding:10px; width:150px;">
+
<div class="element" style="margin_10px 10px 10px 10px; padding:10px 10px 10px 10px">
-
    <img src="https://static.igem.org/mediawiki/2014/6/64/Bielefeld-CeBiTec_2014-10-15_Isobutanol_structure.png" width="150px" align="center">
+
<div id="text">
 +
  Atsumi S, Hanai T, Liao JC., 2008. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. In: <a href="http://www.nature.com/nature/journal/v451/n7174/full/nature06450.html" target="_blank">Nature 451</a>, 86–89.
 +
</div>
 +
</div>
 +
</li>
 +
<li id="Pamela2012">
 +
<div class="element" style="margin_10px 10px 10px 10px; padding:10px 10px 10px 10px">
 +
<div id="text">
 +
Pamela P. Peralta-Yahya, Fuzhong Zhang, Stephen B. del Cardayre & Jay D. Keasling, 2012. Microbial engineering for the production of advanced biofuels. In: <a href="http://www.nature.com/nature/journal/v488/n7411/full/nature11478.html" target="_blank">Nature 488</a>, 320–328
</div>
</div>
-
</center>
 
-
<p>
 
-
It can be produced by the 2-keto-acid, or Ehrlich, pathway. Keto acids, the immediate amino-acid precursors, are decarboxylated into aldehydes and reduced to alcohols. By using this pathway amino-acid-based alcohols can be produced. These include <i>n-</i>butanol from norvaline, <i>n-</i>propanol from isoleucineand isobutanol from valine. Although the energy contents of isobutanol and <i>n-</i>butanol are similar, isobutanol is the closest to industrial use. Because of its branching it has improved properties, like a better octane number. This number is nessesarry to measure a fuel's resistance to knocking in spark ignition engines. (Pamela P. Peralta-Yahya et al., 2012)
 
-
<br>
 
-
In the following table you can find some general information about isobutanol.
 
-
<center>
 
-
<table style="background-color:transparent; cellspacing=1;">
 
-
<tr>
 
-
<td>CAS Number</td><td>78-83-1</td>
 
-
</tr>
 
-
<tr>
 
-
<td>IUPAC Name</td><td>2-methyl-propan-1-ol </td>
 
-
</tr>
 
-
<tr>
 
-
<td>Synonyms</td><td>isobutyl alcohol</td>
 
-
</tr>
 
-
</tr>
 
-
<tr>
 
-
<td></td><td>IBA, IBOH </td>
 
-
</tr>
 
-
</tr>
 
-
<tr>
 
-
<td></td><td>fermentation butyl alcohol</td>
 
-
</tr>
 
-
</tr>
 
-
<tr>
 
-
<td></td><td>1-hydroxymethylpropane</td>
 
-
</tr>
 
-
</tr>
 
-
<tr>
 
-
<td></td><td>isobutanol </td>
 
-
</tr>
 
-
</tr>
 
-
<tr>
 
-
<td></td><td>isopropylcarbinol</td>
 
-
</tr>
 
-
<tr>
 
-
<td></td><td>2-methylpropanol</td>
 
-
</tr>
 
-
<tr>
 
-
<td></td><td>2-methyl-1-propanol</td>
 
-
</tr>
 
-
<tr>
 
-
<td></td><td>2-methylpropan-1-ol</td>
 
-
</tr>
 
-
<tr>
 
-
<td></td><td>2-methylpropyl alcohol </td>
 
-
</tr>
 
-
<tr>
 
-
<td>Molecular Formula</td><td>C4H10O </td>
 
-
</tr>
 
-
<tr>
 
-
<td>Structural Formula</td><td>(CH3)2-CH-CH2OH</td>
 
-
</tr> 
 
-
<tr>
 
-
<td>Molecular Weight</td><td>74.12 g/mol </td>
 
-
</tr>
 
-
</tr> 
 
-
<tr>
 
-
<td>Physical state</td><td>Liquid</td>
 
-
</tr>
 
-
</tr> 
 
-
<tr>
 
-
<td>Melting point</td><td>-108°C</td>
 
-
</tr>
 
-
</tr> 
 
-
<tr>
 
-
<td>Boiling point</td><td>108°C</td>
 
-
</tr>
 
-
</tr> 
 
-
<tr>
 
-
<td>Water solubility</td><td>85.0 g/l at 25°C </td>
 
-
</tr>
 
-
</table>
 
-
</center>
 
-
</p>
 
-
 
-
<br><br>
 
-
 
-
  <h4>Production</h4>
 
-
<p>In 1998 the U.S. EPA Inventory Update Report (IUR) listed 16 manufacturing facilities in the United States. These produced between 100 and 500 million pounds of isobutanol, which are 45.4 – 227.3 thousand metric tons. Manufacturing facilities of other regions or countries including their manufacturing capacities are listed in the following table (INCHEM, 2004).
 
-
<center>
 
-
<table style="background-color:transparent; cellspacing=1;">
 
-
<tr>
 
-
<th>Region or country</th><th>Number of producers</th><th>Manufacturing capacities [metric tons]</th>
 
-
</tr>
 
-
<tr>
 
-
<td>Western Europe</td><td>4</td><td>160,000</td>
 
-
</tr>
 
-
</tr>
 
-
<tr>
 
-
<td>Eastern Europe</td><td>3</td><td>69,000 (including some n-butyl alcohol)</td>
 
-
</tr>
 
-
</tr>
 
-
<tr>
 
-
<td>Russia</td><td>3</td><td>48,000</td>
 
-
</tr>
 
-
</tr>
 
-
<tr>
 
-
<td>Iran</td><td>1</td><td>6,000</td>
 
-
</tr>
 
-
</tr>
 
-
<tr>
 
-
<td>Japan</td><td>3</td><td>43,000</td>
 
-
</tr>
 
-
</tr>
 
-
<tr>
 
-
<td>China</td><td>2</td><td>14,000</td>
 
-
</tr>
 
-
</tr>
 
-
<tr>
 
-
<td>India</td><td>n.a.</td><td>8,000 (including some n-butyl alcohol)</td>
 
-
</tr>
 
-
<tr>
 
-
<td>Indonesia</td><td>1</td><td>10,000</td>
 
-
</tr>
 
-
<tr>
 
-
<td>Korea</td><td>2</td><td>25,000</td>
 
-
</tr>
 
-
<tr>
 
-
<td>Brazil</td><td>1</td><td>19,000</td>
 
-
</tr>
 
-
</table>
 
-
</center>
 
-
</p>
 
-
 
-
<br><br>
 
-
 
-
<h4>Use</h4>
 
-
<p>Isobutanol has many applications. In the following table you can find a list of uses and how many isobutanol is applied for the various uses in the United States
 
-
<br>
 
-
<table style="background-color:transparent; cellspacing=1;">
 
-
<tr><th>Application</th><th>Amount</th><tr>
 
-
<tr>
 
-
<td>lube oil additives</td><td>19 thousand metric tons</td>
 
-
</tr>
 
-
<tr>
 
-
<td>(in which isobutyl alcohol is an intermediate</td><td></td>
 
-
</tr>
 
-
<tr>
 
-
<td>to produce the lube oil additive ZDDP)</td><td></td>
 
-
</tr>
 
-
<tr>
 
-
<td>conversion to isobutyl acetate</td><td>10 thousand metric tons</td>
 
-
</tr>
 
-
<tr>
 
-
<td>direct solvent</td><td>9 thousand metric tons</td>
 
-
</tr>
 
-
<tr>
 
-
<td>conversion to amino resins</td><td>7 thousand metric tons</td>
 
-
</tr>
 
-
<tr>
 
-
<td>conversion to isobutylamines</td><td>1 thousand metric tons</td>
 
-
</tr>
 
-
<tr>
 
-
<td>conversion to acrylate and methacrylate esters</td><td>1 thousand metric tons</td>
 
-
</tr>
 
-
<tr>
 
-
<td>other uses</td><td>1 thousand metric tons</td>
 
-
</tr>
 
-
<tr>
 
-
<td colspan="2">All in all 47 thousand metric tons produced in the United States</td><td></td>
 
-
</tr>
 
-
</table>
 
-
<br>
 
-
As the table shows there are 3 big markets for isobutanol in the United States. The largest one is the production of zinc dialkyldithiophosphates (ZDDP). ZDDP is an additive for lube oils, greases and hydraulic fluids, which work as anti-wear and corrosion inhibitors. <br>
 
-
The conversion of isobutanol to isobutyl acetate is the second largest market.<br>
 
-
The use of isobutanol as a solvent is the third largest market. It is mainly used for surface coatings and adhesives. Hence it is used for as a latent solvent in surface coatings or even as a processing solvent in the production of e.g. pesticides and pharmaceuticals (INCHEM, 2004).<br>
 
-
All in all isobutanol is an important substance for industrial use and large amounts are needed all over the world.
 
-
</p>
 
-
  </div>
 
</div>
</div>
 +
</li>
 +
</ul>
 +
</body>
 +
</html>

Latest revision as of 10:01, 2 December 2014


Module III - Isobutanol production


Short summary

The aim of the third module of our project is the production of isobutanol in Escherichia coli, which was already shown by Atsumi et al. The bacteria should use the products of the carbon dioxide fixation from module II to produce the key metabolite pyruvate. Pyruvate is then further used in metabolic pathways of the cell. Pyruvate is considered as a key metabolite because it can be used as a precursor for different industrially relevant products.
We decided to introduce an isobutanol production pathway which starts with pyruvate and is called 2-keto-acid, or Ehrlich, pathway (Peralta-Yahya et al., 2012, Atsumi et al., 2008). For this we want to use and improve existing BioBricks from iGEM team NCTU Formosa 2011/2012.

Different production pathways of variable high value products derive from pyruvate. For further purpose the modularity of BioBricks can be used to enable the exchange of those producing systems. Other, than isobutanol, thinkable products would be isoprene, putrescine or even antibiotics.

Here you will find our results of the isobutanol production.
You can find more information about isobutanol, our genetical approach and an outlook on our wiki.


References
  • Atsumi S, Hanai T, Liao JC., 2008. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. In: Nature 451, 86–89.
  • Pamela P. Peralta-Yahya, Fuzhong Zhang, Stephen B. del Cardayre & Jay D. Keasling, 2012. Microbial engineering for the production of advanced biofuels. In: Nature 488, 320–328