Team:HZAU-China/Circuit
From 2014.igem.org
(21 intermediate revisions not shown) | |||
Line 152: | Line 152: | ||
<!-- logo start here --> | <!-- logo start here --> | ||
<div id="logo-left"> | <div id="logo-left"> | ||
- | <a href="https://igem.org/Team.cgi?year=2014&team_name=HZAU-China"><img src="https://static.igem.org/mediawiki/2014/ | + | <a href="https://igem.org/Team.cgi?year=2014&team_name=HZAU-China"><img src="https://static.igem.org/mediawiki/2014/4/4c/Hzau-home-lllogo.png" alt="HZAU-China" /></a> |
</div> | </div> | ||
<!-- logo end here --> | <!-- logo end here --> | ||
Line 168: | Line 168: | ||
<li class="dropdown"><a href="https://2014.igem.org/Team:HZAU-China/Project">Project</a> | <li class="dropdown"><a href="https://2014.igem.org/Team:HZAU-China/Project">Project</a> | ||
<ul> | <ul> | ||
- | <li><a href="https://2014.igem.org/Team:HZAU-China/ | + | <li><a href="https://2014.igem.org/Team:HZAU-China/Design"><span>-</span>Overview</a></li> |
- | + | <li><a href="https://2014.igem.org/Team:HZAU-China/Background"><span>-</span>Background</a></li> | |
<li><a href="https://2014.igem.org/Team:HZAU-China/Input"><span>-</span>Input module</a></li> | <li><a href="https://2014.igem.org/Team:HZAU-China/Input"><span>-</span>Input module</a></li> | ||
<li><a href="https://2014.igem.org/Team:HZAU-China/Processing"><span>-</span>Processing module</a></li> | <li><a href="https://2014.igem.org/Team:HZAU-China/Processing"><span>-</span>Processing module</a></li> | ||
Line 178: | Line 178: | ||
<li class="dropdown"><a href="https://2014.igem.org/Team:HZAU-China/Review">Wetlab</a> | <li class="dropdown"><a href="https://2014.igem.org/Team:HZAU-China/Review">Wetlab</a> | ||
<ul> | <ul> | ||
- | <li><a href="https://2014.igem.org/Team:HZAU-China/ | + | <li><a href="https://2014.igem.org/Team:HZAU-China/Overview"><span>-</span>Overview</a></li> |
<li><a href="https://2014.igem.org/Team:HZAU-China/Construction"><span>-</span>Construction</a></li> | <li><a href="https://2014.igem.org/Team:HZAU-China/Construction"><span>-</span>Construction</a></li> | ||
<li><a href="https://2014.igem.org/Team:HZAU-China/Characterization"><span>-</span>Characterization</a></li> | <li><a href="https://2014.igem.org/Team:HZAU-China/Characterization"><span>-</span>Characterization</a></li> | ||
+ | <li><a href="https://2014.igem.org/Team:HZAU-China/Help"><span>-</span>Help each other</a></li> | ||
<li><a href="https://2014.igem.org/Team:HZAU-China/Protocol"><span>-</span>Protocol</a></li> | <li><a href="https://2014.igem.org/Team:HZAU-China/Protocol"><span>-</span>Protocol</a></li> | ||
- | <li><a href="https://2014.igem.org/Team:HZAU-China/Labnotes"><span>-</span>Labnotes</a></li> | + | <li><a href="https://2014.igem.org/Team:HZAU-China/Labnotes"><span>-</span>Labnotes</a></li> |
</ul> | </ul> | ||
</li> | </li> | ||
<li class="selected dropdown"><a href="https://2014.igem.org/Team:HZAU-China/Modeling">Modeling</a> | <li class="selected dropdown"><a href="https://2014.igem.org/Team:HZAU-China/Modeling">Modeling</a> | ||
<ul> | <ul> | ||
- | <li><a href="https://2014.igem.org/Team:HZAU-China/ | + | <li><a href="https://2014.igem.org/Team:HZAU-China/MOverview"><span>-</span>Overview</a></li> |
<li><a href="https://2014.igem.org/Team:HZAU-China/Biological"><span>-</span>Biological processes</a></li> | <li><a href="https://2014.igem.org/Team:HZAU-China/Biological"><span>-</span>Biological processes</a></li> | ||
<li><a href="https://2014.igem.org/Team:HZAU-China/Comparison"><span>-</span>Comparison between different designs</a></li> | <li><a href="https://2014.igem.org/Team:HZAU-China/Comparison"><span>-</span>Comparison between different designs</a></li> | ||
Line 196: | Line 197: | ||
<li class="dropdown"><a href="https://2014.igem.org/Team:HZAU-China/Achievements">Achievements</a> | <li class="dropdown"><a href="https://2014.igem.org/Team:HZAU-China/Achievements">Achievements</a> | ||
<ul> | <ul> | ||
- | <li><a href="https://2014.igem.org/Team:HZAU-China/Achievements"><span>-</span> | + | <li><a href="https://2014.igem.org/Team:HZAU-China/Achievements"><span>-</span>Judgement</a></li> |
<li><a href="https://2014.igem.org/Team:HZAU-China/Parts"><span>-</span>Parts</a></li> | <li><a href="https://2014.igem.org/Team:HZAU-China/Parts"><span>-</span>Parts</a></li> | ||
</ul> | </ul> | ||
Line 204: | Line 205: | ||
<li><a href="https://2014.igem.org/Team:HZAU-China/Team"><span>-</span>Members</a></li> | <li><a href="https://2014.igem.org/Team:HZAU-China/Team"><span>-</span>Members</a></li> | ||
<li><a href="https://2014.igem.org/Team:HZAU-China/Attributions"><span>-</span>Attributions</a></li> | <li><a href="https://2014.igem.org/Team:HZAU-China/Attributions"><span>-</span>Attributions</a></li> | ||
- | <li><a href="https://2014.igem.org/Team:HZAU-China/Gallery"><span>-</span>Gallery</a></li> | + | <li><a href="https://2014.igem.org/Team:HZAU-China/Gallery"><span>-</span>Gallery</a></li> |
+ | <li><a href="https://2014.igem.org/Team:HZAU-China/acknowledgment"><span>-</span>Acknowledgment</a></li> | ||
</ul> | </ul> | ||
</li> | </li> | ||
Line 211: | Line 213: | ||
<li><a href="https://2014.igem.org/Team:HZAU-China/Collaboration"><span>-</span>Collaboration</a></li> | <li><a href="https://2014.igem.org/Team:HZAU-China/Collaboration"><span>-</span>Collaboration</a></li> | ||
<li><a href="https://2014.igem.org/Team:HZAU-China/Meetup"><span>-</span>Meetup</a></li> | <li><a href="https://2014.igem.org/Team:HZAU-China/Meetup"><span>-</span>Meetup</a></li> | ||
- | <li><a href="https://2014.igem.org/Team:HZAU-China/ | + | <li><a href="https://2014.igem.org/Team:HZAU-China/Humanities"><span>-</span>Humanities</a></li> |
- | <li><a href="https://2014.igem.org/Team:HZAU-China/Pubic outreach"><span>-</span> | + | <li><a href="https://2014.igem.org/Team:HZAU-China/Economics"><span>-</span>Social Sciences</a></li> |
+ | <li><a href="https://2014.igem.org/Team:HZAU-China/Pubic outreach"><span>-</span>Public outreach</a></li> | ||
<li><a href="https://2014.igem.org/Team:HZAU-China/Safety"><span>-</span>Safety</a></li> | <li><a href="https://2014.igem.org/Team:HZAU-China/Safety"><span>-</span>Safety</a></li> | ||
<li><a href="https://2014.igem.org/Team:HZAU-China/Social media"><span>-</span>Social media</a></li> | <li><a href="https://2014.igem.org/Team:HZAU-China/Social media"><span>-</span>Social media</a></li> | ||
Line 237: | Line 240: | ||
<div id="breadcrumb-content"> | <div id="breadcrumb-content"> | ||
<ul> | <ul> | ||
- | <li><a href=" | + | <li><a href="https://2014.igem.org/Team:HZAU-China">Home</a></li> |
- | <li | + | <li>Modeling</li> |
- | <li | + | <li>Design principle of rewirable circuit</li> |
</ul> | </ul> | ||
</div> | </div> | ||
Line 250: | Line 253: | ||
<div class="eleven columns"> | <div class="eleven columns"> | ||
<div class="offset-by-one columns"> | <div class="offset-by-one columns"> | ||
+ | <h3 style="text-align:center">Design Principle of Rewirable Circuit</h3> | ||
<p class="highlighttext">If you want to design your own rewirable circuit, you may need more information about how to design. Our design principle can help you to find the pattern that satisfies the specification. Our method is based on the large-scale search.</p> | <p class="highlighttext">If you want to design your own rewirable circuit, you may need more information about how to design. Our design principle can help you to find the pattern that satisfies the specification. Our method is based on the large-scale search.</p> | ||
- | |||
- | |||
- | |||
<h5>5.1 ODE sets with matrices</h5> | <h5>5.1 ODE sets with matrices</h5> | ||
- | <p class="highlighttext">In order to implement large scale calculation, we introduce the ordinary differential equation sets with matrices. The transcription regulatory network can be abstracted into a matrix $R$. We use 1, -1, 0 to stand for three possible gene relationships: activation, repression, no regulation. The elements $r_{ij}$ in $R$ indicates that gene $i$ is regulated by gene $j$. This matrix is used to index the topological structure. For calculation, we need to decompose this matrix into two adjacent matrices to represent activation relationship $R_1$ and repression relationship $R_2$, respectively. According to the matrices, we can use the following equations to simulate the gene expression | + | <p class="highlighttext">In order to implement large scale calculation, we introduce the ordinary differential equation sets with matrices. The transcription regulatory network can be abstracted into a matrix $R$. We use 1, -1, 0 to stand for three possible gene relationships: activation, repression, no regulation. The elements $r_{ij}$ in $R$ indicates that gene $i$ is regulated by gene $j$. This matrix is used to index the topological structure. For calculation, we need to decompose this matrix into two adjacent matrices to represent activation relationship $R_1$ and repression relationship $R_2$, respectively. According to the matrices, we can use the following equations to simulate the gene expression dynamics. |
\begin{equation} | \begin{equation} | ||
\begin{split} | \begin{split} | ||
Line 289: | Line 290: | ||
I | I | ||
\cdot | \cdot | ||
- | K_{ | + | K_{R} |
\cdot | \cdot | ||
\left( | \left( | ||
Line 314: | Line 315: | ||
\end{array} | \end{array} | ||
\right) | \right) | ||
- | -K_{ | + | -K_{P}\cdot |
\left( | \left( | ||
\begin{array}{c} | \begin{array}{c} | ||
Line 323: | Line 324: | ||
\right) | \right) | ||
\end{split} | \end{split} | ||
- | \end{equation}</p> | + | \end{equation},</p> |
<p class="highlighttext">where $I$ is the identity matrix. Ignoring some detailed information, we use this coarse-grained model to perform a complete search of the topological space.</p> | <p class="highlighttext">where $I$ is the identity matrix. Ignoring some detailed information, we use this coarse-grained model to perform a complete search of the topological space.</p> | ||
<div class="clear"></div> | <div class="clear"></div> | ||
Line 331: | Line 332: | ||
<h5>5.2 Function-topology maps</h5> | <h5>5.2 Function-topology maps</h5> | ||
<p class="highlighttext">The rewirable circuit can be user-defined. First, we define the functions that are used to solve some problems. Be sure that these functions can be represented by some quantitative features. For each function, you should construct a fitness function based on the quantitative features. Then we enumerate the completed topological space. For each topology, a lot of parameter sets are sampled using the Latin hypercube sampling method. We calculate different fitness functions for each topology and get a function-topology table.</p> | <p class="highlighttext">The rewirable circuit can be user-defined. First, we define the functions that are used to solve some problems. Be sure that these functions can be represented by some quantitative features. For each function, you should construct a fitness function based on the quantitative features. Then we enumerate the completed topological space. For each topology, a lot of parameter sets are sampled using the Latin hypercube sampling method. We calculate different fitness functions for each topology and get a function-topology table.</p> | ||
- | |||
- | |||
<div class="clear"></div> | <div class="clear"></div> | ||
<div class="divider"></div> | <div class="divider"></div> | ||
Line 338: | Line 337: | ||
<h5>5.3 Topological structure matching</h5> | <h5>5.3 Topological structure matching</h5> | ||
- | <p class="highlighttext">There are two criteria to decide whether two topological structure of regulation can be converted. If the index matrices $R_A$ and $R_B$ only differ in one row, which means only one gene is regulated in different way in the genetic circuit, we can use two inducible promoters to drive this gene alternately ( | + | <p class="highlighttext">There are two criteria to decide whether two topological structure of regulation can be converted. If the index matrices $R_A$ and $R_B$ only differ in one row, which means only one gene is regulated in a different way in the genetic circuit, we can use two inducible promoters to drive this gene alternately (Fig. 1a). In this case, we conclude that the two topological structures match. Another case is that $R_A$ and $R_B$ can convert mutually by exchanging two rows. In this case, promoter transposition of two genes can swap the ways they are regulated (Fig. 1b). </p> |
- | <img src="" width="" class="img-center"/> | + | <img src="https://static.igem.org/mediawiki/2014/b/bd/Hzau-model-9.png" width="700px" class="img-center"/> |
- | <p class="figuretext">Figure | + | <p class="figuretext">Figure 1. Sketches of matching topological structure.</p> |
<p class="highlighttext">So we can use the index matrices to match topological structures that are likely to convert.</p> | <p class="highlighttext">So we can use the index matrices to match topological structures that are likely to convert.</p> | ||
<div class="clear"></div> | <div class="clear"></div> | ||
Line 354: | Line 353: | ||
<div class="clear"></div> | <div class="clear"></div> | ||
<div class="divider"></div> | <div class="divider"></div> | ||
+ | |||
+ | |||
+ | <h5>References</h5> | ||
+ | <p class="highlighttext">Ma, W., Trusina, A., El-Samad, H., Lim, W. A., & Tang, C. (2009). Defining network topologies that can achieve biochemical adaptation. Cell, 138(4), 760-773.</p> | ||
+ | |||
Latest revision as of 02:18, 18 October 2014
<!DOCTYPE html>
Design principle of rewirable circuit
Design Principle of Rewirable Circuit
If you want to design your own rewirable circuit, you may need more information about how to design. Our design principle can help you to find the pattern that satisfies the specification. Our method is based on the large-scale search.
5.1 ODE sets with matrices
In order to implement large scale calculation, we introduce the ordinary differential equation sets with matrices. The transcription regulatory network can be abstracted into a matrix $R$. We use 1, -1, 0 to stand for three possible gene relationships: activation, repression, no regulation. The elements $r_{ij}$ in $R$ indicates that gene $i$ is regulated by gene $j$. This matrix is used to index the topological structure. For calculation, we need to decompose this matrix into two adjacent matrices to represent activation relationship $R_1$ and repression relationship $R_2$, respectively. According to the matrices, we can use the following equations to simulate the gene expression dynamics. \begin{equation} \begin{split} \left( \begin{array}{c} \frac{d{mRNA}_{x_1}}{dt}\\ \vdots\\ \frac{d{mRNA}_{x_N}}{dt}\\ \end{array} \right) &= R_1 \cdot \left( \begin{array}{c} \frac{\beta_1\cdot x_1^n}{K^n+x_1^n}\\ \vdots\\ \frac{\beta_N\cdot x_N^n}{K^n+x_N^n}\\ \end{array} \right) + R_2 \cdot \left( \begin{array}{c} \frac{\beta_{N+1}\cdot K^n}{K^n+x_1^n}\\ \vdots\\ \frac{\beta_{2N}\cdot K^n}{K^n+x_N^n}\\ \end{array} \right) - I \cdot K_{R} \cdot \left( \begin{array}{c} {mRNA}_{x_1}\\ \vdots\\ {mRNA}_{x_N}\\ \end{array} \right)\\ \left( \begin{array}{c} \frac{dx_1}{dt}\\ \vdots\\ \frac{dx_N}{dt}\\ \end{array} \right) &= K_{tl}\cdot \left( \begin{array}{c} {mRNA}_{x_1}\\ \vdots\\ {mRNA}_{x_N}\\ \end{array} \right) -K_{P}\cdot \left( \begin{array}{c} x_1\\ \vdots\\ x_N\\ \end{array} \right) \end{split} \end{equation},
where $I$ is the identity matrix. Ignoring some detailed information, we use this coarse-grained model to perform a complete search of the topological space.
5.2 Function-topology maps
The rewirable circuit can be user-defined. First, we define the functions that are used to solve some problems. Be sure that these functions can be represented by some quantitative features. For each function, you should construct a fitness function based on the quantitative features. Then we enumerate the completed topological space. For each topology, a lot of parameter sets are sampled using the Latin hypercube sampling method. We calculate different fitness functions for each topology and get a function-topology table.
5.3 Topological structure matching
There are two criteria to decide whether two topological structure of regulation can be converted. If the index matrices $R_A$ and $R_B$ only differ in one row, which means only one gene is regulated in a different way in the genetic circuit, we can use two inducible promoters to drive this gene alternately (Fig. 1a). In this case, we conclude that the two topological structures match. Another case is that $R_A$ and $R_B$ can convert mutually by exchanging two rows. In this case, promoter transposition of two genes can swap the ways they are regulated (Fig. 1b).
Figure 1. Sketches of matching topological structure.
So we can use the index matrices to match topological structures that are likely to convert.
5.4 General Steps for designing rewirable circuit
1. List the specifications for the rewirable circuit;
2. Design fitness functions for each function you want to realise based on the quantitative specifications;
3. Scan the topological space to calculate the fitness functions for each topological structure;
4. Match topological structures that can convert mutually;
5. Select a pair of topological structures whose value of fitness function satisfies the specification.
References
Ma, W., Trusina, A., El-Samad, H., Lim, W. A., & Tang, C. (2009). Defining network topologies that can achieve biochemical adaptation. Cell, 138(4), 760-773.