Team:EPF Lausanne/Microfluidics/Making/PartI

From 2014.igem.org

(Difference between revisions)
(Created page with "{{CSS/EPFL_head}} <html> <style> #contentSub, #footer-box, #catlinks, #search-controls, #p-logo, .printfooter, .firstHeading,.visualClear {display: none;} /*-- hides default wiki...")
 
(74 intermediate revisions not shown)
Line 11: Line 11:
<!-- MENU -->
<!-- MENU -->
-
<nav class="navbar navbar-default" role="navigation">
+
<!-- MENU -->
 +
<nav class="navbar navbar-default navbar_alt" role="navigation">
   <div class="container-fluid">
   <div class="container-fluid">
     <!-- Brand and toggle get grouped for better mobile display -->
     <!-- Brand and toggle get grouped for better mobile display -->
Line 30: Line 31:
     <div class="nav-collapse">
     <div class="nav-collapse">
       <ul class="nav">
       <ul class="nav">
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne">Home</a></li>
+
        <li><a href="https://2014.igem.org/Team:EPF_Lausanne">Home</a></li>
         <li class="dropdown">
         <li class="dropdown">
-
           <a href="https://2014.igem.org/Team:EPF_Lausanne" class="dropdown-toggle" data-toggle="dropdown">Project <span class="caret"></span></a>
+
           <a href="#" class="dropdown-toggle active" data-toggle="dropdown">Project <span class="caret"></span></a>
           <ul class="dropdown-menu" role="menu">
           <ul class="dropdown-menu" role="menu">
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Overview">Overview</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Overview">Overview</a></li>
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Stress Responsive Bacteria</a></li>
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">Osmo Responsive Yeast</a></li>
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics" class="active">Microfluidics</a></li>
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Hardware">Hardware</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Applications">Applications</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Applications">Applications</a></li>
-
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
+
 
-
          </ul>
+
 
 +
<!--             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
 +
-->          </ul>
         </li>
         </li>
-
        <li class="dropdown">
+
 
-
           <a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook" class="dropdown-toggle active" data-toggle="dropdown">Notebook <span class="caret"></span></a>
+
      <li class="dropdown">
 +
           <a href="#" class="dropdown-toggle" data-toggle="dropdown">Achievements <span class="caret"></span></a>
           <ul class="dropdown-menu" role="menu">
           <ul class="dropdown-menu" role="menu">
-
            <li class="active"><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook">Timeline</a></li>
+
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Results">Results</a></li>
-
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Protocol">Protocol</a></li>
+
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Data">Data</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Data">Data</a></li>
-
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Safety">Safety</a></li>
+
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Judging">Judging</a></li>
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Parts">Parts</a></li>
           </ul>
           </ul>
 +
        </li>
 +
 +
        <li class="dropdown">
 +
          <a href="#" class="dropdown-toggle" data-toggle="dropdown">Policy &amp; Practice <span class="caret"></span></a>
 +
          <ul class="dropdown-menu" role="menu">
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practice</a></li>
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Safety">Bio Safety</a></li>
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/PolicyPractice">Metafluidics</a></li>
 +
 +
<!--            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
 +
-->          </ul>
         </li>
         </li>
       <li class="dropdown">
       <li class="dropdown">
-
           <a href="https://2014.igem.org/Team:EPF_Lausanne/Team" class="dropdown-toggle" data-toggle="dropdown">Team <span class="caret"></span></a>
+
           <a href="#" class="dropdown-toggle" data-toggle="dropdown">Notebook <span class="caret"></span></a>
           <ul class="dropdown-menu" role="menu">
           <ul class="dropdown-menu" role="menu">
-
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Team">Meet us!</a></li>
+
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Bacteria">Bacteria</a></li>
-
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Attributions">Attributions</a></li>
+
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Yeast">Yeast</a></li>
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Microfluidics">Microfluidics</a></li>
 +
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Protocol">Protocols</a></li>
           </ul>
           </ul>
         </li>
         </li>
       <li class="dropdown">
       <li class="dropdown">
-
           <a href="https://2014.igem.org/Team:EPF_Lausanne/Team" class="dropdown-toggle" data-toggle="dropdown">Achievements <span class="caret"></span></a>
+
           <a href="#" class="dropdown-toggle" data-toggle="dropdown">Team <span class="caret"></span></a>
           <ul class="dropdown-menu" role="menu">
           <ul class="dropdown-menu" role="menu">
-
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Judging">Judging</a></li>
+
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook">Timeline</a></li>
-
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Parts">Parts</a></li>
+
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Team">Meet us!</a></li>
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Attributions">Attributions</a></li>
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Acknowledgments">Acknowledgments</a></li>
           </ul>
           </ul>
         </li>
         </li>
Line 75: Line 98:
 +
<div class="container">
 +
<div class="box" id="boxbread">
-
<!-- ABSTRACT -->
+
<ol class="breadcrumb breadcrumb-arrow">
 +
                  <li><a href="https://2014.igem.org/Team:EPF_Lausanne"><i class="glyphicon glyphicon-home"></i> Home</a></li>
 +
                  <li class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown"><i class="glyphicon glyphicon-cog"></i> Project <b class="caret"></b></a>
 +
                    <ul class="dropdown-menu">
 +
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Overview">Overview</a></li>
 +
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Stress Responsive Bacteria</a></li>
 +
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">Osmo Responsive Yeast</a></li>
 +
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Hardware">Hardware</a></li>
 +
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Applications">Applications</a></li>
 +
                    </ul>
 +
                  </li>
 +
                  <li class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown"><i class="glyphicon glyphicon-search"></i> Microfluidics <b class="caret"></b></a>
 +
                    <ul class="dropdown-menu">
 +
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics">Overview</a></li>
 +
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Designing">Designing a chip</a></li>
-
<div class="whitebg">
+
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Making/PartII">Making a chip: Part II</a></li>
-
<div class="container">
+
                    </ul>
 +
                  </li>
-
<ol class="breadcrumb">
+
                  <li class="active"><span>Making a chip Part I: mask and wafer</span></li>
-
  <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics">Microfluidics</a></li>
+
                 </ol>
-
      <li class="dropdown">
+
</div>
-
            <a href="#" class="dropdown-toggle" data-toggle="dropdown">
+
-
                Making a chip <b class="caret"></b>
+
-
            </a>
+
-
            <ul class="dropdown-menu">
+
-
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Making/PartI">Part I</a></li>
+
-
                 <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Making/PartII">Part II</a></li>
+
-
            </ul>
+
-
        </li>
+
-
  <li class="active">Part I: mask and wafer</li>
+
-
</ol>
+
<div class="row">
 +
 
 +
<div class="col col-md-9">
 +
 
 +
 
 +
<div class="whitebg box">
 +
 
 +
<a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Designing" class="btn btn-primary pull-left" role="button">&lt;- Designing a chip</a>
 +
 
 +
<a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Making/PartII" class="btn btn-primary pull-right" role="button">Next step: Making a chip part II -&gt;</a>
 +
 
 +
<br />
 +
 
 +
<div class="clearfix"></div>
 +
<br />
 +
 
 +
<br />
 +
 
 +
<h2 id="introductiontophotoresist">Introduction to photolithography</h2>
 +
 
 +
<br/>
 +
 
 +
<p class="lead">
 +
The following processes will explain how a mask and a positive/negative resist wafer are made. These two components are essential for the creation of our chips, as they are the master plan, the mold for the chip. This is how it works: a mask is used as a mold to make a wafer, and a wafer is used as a mold to make each of the microfluidic chip's layers (control and flow layers).</p>
 +
 
 +
<div class="row">
 +
<div class="cntr col col-md-6">
 +
<p>Mask</p>
 +
<a href="https://static.igem.org/mediawiki/2014/a/a8/Mask.JPG" data-lightbox="image1" data-title="Mask (to make wafer)"><img src="https://static.igem.org/mediawiki/2014/a/a8/Mask.JPG" class="img-border" width="35%"></a>
 +
</div>
 +
<div class="cntr col col-md-6">
 +
<p>Wafers</p>
 +
<a href="https://static.igem.org/mediawiki/2014/9/9f/Wafers.JPG" data-lightbox="image1" data-title="Wafers (to make the chip)"><img src="https://static.igem.org/mediawiki/2014/9/9f/Wafers.JPG" class="img-border" width="35%"></a>
 +
</div></div>
 +
 
 +
 
 +
<br /><br />
 +
 
 +
<p class="lead">Here are defined the two main types of photoresist. A photoresist is a light-sensitive material used in several industrial processes, such as photolithography and photoengraving to form a patterned coating on a surface:</p>
 +
 
 +
<p class="lead">- A negative resist is a type of photoresist in which the portion of the photoresist that is exposed to light crosslinks and thus becomes insoluble to the photoresist developer. The unexposed portion of the photoresist is dissolved by the photoresist developer.</p>
 +
<p class="lead">- A positive resist is a type of photoresist in which the portion of the photoresist that is exposed to light becomes soluble to the photoresist developer. The portion of the photoresist that is unexposed remains insoluble to the photoresist developer.</p>
<div class="cntr">
<div class="cntr">
-
<img src="https://static.igem.org/mediawiki/2014/5/55/Chip_icon.png" alt="Chip icon" height="300" />
+
<img src="https://static.igem.org/mediawiki/2014/a/ac/Resist.png" align="middle" class="img-responsive" />
</div>
</div>
 +
<div class="cntr">
-
<p class="lead">Our Biopad is implemented in a microfluidic chip. This tool allows all kinds of analytical experiments and is increasingly used in biological research. From fabrication to applications, find out more about this awesome device here!</p>
+
<h2 id="processoutline">Mask process and outline</h2>
 +
<table class="table table-striped valign-middle">
 +
  <thead>
 +
    <tr>
 +
      <th>Step</th>
 +
      <th>Process description</th>
 +
      <th>Machines</th>
 +
      <th>Cross-section after process</th>
 +
    </tr>
 +
  </thead>
 +
  <tbody>
 +
    <tr>
 +
      <td><b>1</b></td>
 +
      <td>  </td>
 +
      <td> </td>
 +
      <td class="cntr"><img src="https://static.igem.org/mediawiki/2014/d/d8/Cr_blank_fab1.gif" /><br />
 +
      Cross section of a photolithography mask</td>
 +
    </tr>
-
<h3>Microfluidics and synthetic biology</h3>
+
  <tr>
 +
      <td><b>2</b></td>
 +
      <td><b>Laser exposure</b></td>
 +
      <td class="cntr"><a href="https://static.igem.org/mediawiki/2014/8/81/DWL200_intro.jpg" data-lightbox="img1" data-title="Heidelberg DWL200, Laser lithography system"><img src="https://static.igem.org/mediawiki/2014/8/81/DWL200_intro.jpg" width="60%"/></a><br />
 +
      Heidelberg DWL200, Laser lithography system</td>
 +
      <td class="cntr"><img src="https://static.igem.org/mediawiki/2014/9/9e/Cr_blank_fab2.gif" /><br />
 +
      The laser beams on the surface of the photoresist. By doing so, it imprints the pattern of the design on the PR.</td>
 +
    </tr>
-
<p>Microfluidics is an efficient tool for biological experiments. Its fields of applications go from gene regulatory network analysis to antibody screening. Several laboratory techniques can be adapted to these devices, such as DNA amplification, protein separation or cell sorting.</p>  
+
    <tr>
-
<p>The chips are generally fabricated from elastomeric materials, such as polydimethylsiloxane (PDMS) and contain micron-sized channels with integrated micromechanical tools (mixer, valve, pump…). This allows massive parallelisation as well as great modularity of the experiments.</p>
+
      <td><b>3</b></td>
 +
      <td><b>Developing of the mask</b></td>
 +
      <td class="cntr"><a href="https://static.igem.org/mediawiki/2014/4/4d/DV10.jpg" data-lightbox="img1" data-title="DV10 Mask and Thick positive resist developer"><img src="https://static.igem.org/mediawiki/2014/4/4d/DV10.jpg" width="60%"/></a><br />
 +
      DV10 Mask and Thick positive resist developer</td>
 +
      <td class="cntr"><img src="https://static.igem.org/mediawiki/2014/6/6c/Cr_blank_fab3.gif" /><br />
 +
      A chemical treatment is used to
 +
remove the PR that was exposed by the laser in the previous step,
 +
creating the ‘holes’ on the photoresist
 +
</td>
 +
    </tr>
-
<p>Most soluble reagents can be used, including DNA, proteins and small molecule libraries. As we focused our work on E.coli and S. cerevisiae, most of our experiments included culture of these species on-chip during our experiments. We first used the MITOMI chip which was invented in the lab of our supervisor Prof. Maerkl. We then designed new chips that were more adapted to stress the cells by pressure, as needed to implement the final “BioPad”.</p>
+
    <tr>
 +
      <td><b>4</b></td>
 +
      <td><b>Etching of the chrome</b></td>
 +
      <td class="cntr"><a href="https://static.igem.org/mediawiki/2014/e/ed/Coillard.jpg" data-lightbox="img1" data-title="Coillard Gravure"><img src="https://static.igem.org/mediawiki/2014/e/ed/Coillard.jpg" width="60%"/></a><br />
 +
      Coillard Gravure</td>
 +
      <td class="cntr"><img src="https://static.igem.org/mediawiki/2014/a/a9/Cr_blank_fab4.gif" /><br />
 +
      The chrome is removed at the sites where the resist layer is missing, using an acid bath.
 +
</td>
 +
    </tr>
 +
    <tr>
 +
      <td><b>5</b></td>
 +
      <td><b>Removal of Resist</b></td>
 +
      <td class="cntr"><a href="https://static.igem.org/mediawiki/2014/e/ed/Coillard.jpg" data-lightbox="img1" data-title="Coillard Photolithographie"><img src="https://static.igem.org/mediawiki/2014/e/ed/Coillard.jpg" width="60%"/></a><br />
 +
      Coillard Photolithographie</td>
 +
      <td class="cntr"><img src="https://static.igem.org/mediawiki/2014/a/aa/Cr_blank_fab5.gif" /><br />
 +
      Once the chrome is removed at the precise sites (previous step), the rest of the resist is removed from the whole surface.
 +
</td>
 +
    </tr>
-
<p>The major benefits of using microfluidic chips are:</p>
+
    <tr>
-
<ul>
+
      <td><b>6</b></td>
-
<li>Low volume required (microliter range)</li>
+
      <td><b>Use of mask</b></td>
-
<li>High-throughput</li>
+
      <td class="cntr"></td>
-
<li>High precision and sensitive detection</li>
+
      <td class="cntr"><img src="https://static.igem.org/mediawiki/2014/e/e1/Cr_blank_use.gif" /><br />
-
<li>Cheap</li>
+
The mask can now be used to expose its pattern on the wafer using UV light
-
<li>Range of applications</li>
+
</td>
-
<li>Safe, enclosed environment (for more information go to the safety page)</li>
+
    </tr>
-
</ul>
+
  </tbody>
 +
</table>
 +
<br/>
 +
<h2 id="controllayer">Control Layer Process outline</h2>
 +
<table class="table table-striped valign-middle">
 +
  <thead>
 +
    <tr>
 +
      <th>Step</th>
 +
      <th>Process description</th>
 +
      <th>Machines</th>
 +
      <th>Cross-section after process</th>
 +
    </tr>
 +
  </thead>
 +
  <tbody>
 +
    <tr>
 +
      <td><b>1</b></td>
 +
      <td><b>Substrate:</b> Wafer Clean</td>
 +
      <td class="cntr"><a href="https://static.igem.org/mediawiki/2014/7/7b/Tepla.jpg" data-lightbox="img1" data-title="Tepla"><img src="https://static.igem.org/mediawiki/2014/7/7b/Tepla.jpg" width="70%"/></a><br />
 +
      Tepla 300</td>
 +
      <td class="cntr"><img src="https://static.igem.org/mediawiki/2014/7/71/Cl1.png" /><br />
 +
      Clean the wafer using plasma treatment </td>
 +
    </tr>
 +
  <tr>
 +
      <td><b>2</b></td>
 +
      <td><b>Photolith:</b> Resist deposition
 +
      Photo Resist : Su8 GM1070 – 30μm
 +
      </td>
 +
      <td class="cntr"><a href="https://static.igem.org/mediawiki/2014/0/04/Sawatec.jpg" data-lightbox="img1" data-title="Sawatec"><img src="https://static.igem.org/mediawiki/2014/0/04/Sawatec.jpg" width="70%"/></a><br />
 +
      Sawatec</td>
 +
      <td class="cntr"><img src="https://static.igem.org/mediawiki/2014/8/82/Cl2.png" /><br />
 +
      A layer of negative photoresist is added on the wafer by spincoating</td>
 +
    </tr>
-
<p>Some examples of microfluidic experiments:</p>
+
    <tr>
-
<ul>
+
      <td><b>3</b></td>
-
<li>Transcription factors – DNA interactions</li>
+
      <td><b>Relaxation time + Softbake</b></td>
-
<li>Protein – protein interactions</li>
+
      <td class="cntr"><a href="https://static.igem.org/mediawiki/2014/0/04/Sawatec.jpg" data-lightbox="img1" data-title="Sawatec"><img src="https://static.igem.org/mediawiki/2014/0/04/Sawatec.jpg" width="70%" /></a><br />
-
<li>On-chip gene synthesis: protein expression from coding DNA</li>
+
      Sawatec</td>
-
<li>On-chip chemostat chambers: can be used to trace the fate of a single bacterium or to grow bacteria/yeast</li>
+
      <td class="cntr"><img src="https://static.igem.org/mediawiki/2014/e/e8/Cl3.png" /><br />
-
<li>Antibody characterisation</li>
+
      Softbake wafer using Sawatec hotplate, to solidify the photo resist
-
</ul>
+
</td>
 +
    </tr>
-
<h3>How does it work ?</h3>
+
    <tr>
 +
      <td><b>4</b></td>
 +
      <td><b>Photolith:</b>UV exposure</td>
 +
      <td class="cntr"><a href="https://static.igem.org/mediawiki/2014/9/91/MaskAligner.jpg" data-lightbox="img1" data-title="Mask Aligner"><img src="https://static.igem.org/mediawiki/2014/9/91/MaskAligner.jpg" width="70%"/></a><br />
 +
      Mask Aligner</td>
 +
      <td class="cntr"><img src="https://static.igem.org/mediawiki/2014/a/ab/Cl4.png" /><br />
 +
      The UV lights are exposed through the Mask on the surface of the wafer. By doing so, it imprints the pattern of the design on the PR.
 +
</td>
 +
    </tr>
-
<img src="https://static.igem.org/mediawiki/2014/0/03/Chip_sketch.png" alt="Chip sketch" class="cntr" width="100%" />
+
    <tr>
 +
      <td><b>5</b></td>
 +
      <td><b>Post exposure bake</b></td>
 +
      <td class="cntr"><a href="https://static.igem.org/mediawiki/2014/0/04/Sawatec.jpg" data-lightbox="img1" data-title="Sawatec"><img src="https://static.igem.org/mediawiki/2014/0/04/Sawatec.jpg" width="70%"/></a><br />
 +
      Sawatec</td>
 +
      <td class="cntr"><img src="https://static.igem.org/mediawiki/2014/9/98/Cl5.png" /><br />
 +
      Bake wafer using Sawatec hotplate
 +
</td>
 +
    </tr>
-
<br />
+
    <tr>
-
<br />
+
      <td><b>6</b></td>
-
<br />
+
      <td><b>Relaxation delay</b></td>
-
<ul>
+
      <td class="cntr"></td>
-
<li>a. Disassembled view of a microfluidic chip showing all the different components and the region where bacteria/yeasts are located</li>
+
      <td class="cntr">Wait 1 hour – overnight</td>
-
<li>b. Cross section of the chip showing how a valve works: when pressure is applied in the control channel, the ceiling of the flow layer is pushed against the glass slide, which closes the flow channel</li>
+
    </tr>
-
<li>c. When pressure is retrieved, the ceiling elevates again, which opens the flow channel</li>
+
-
</ul>
+
-
<br />
+
    <tr>
-
<br />
+
      <td><b>7</b></td>
 +
      <td><b>Photolith:</b> Develop</td>
 +
      <td class="cntr"><a href="https://static.igem.org/mediawiki/2014/8/89/Wetbench.jpg" data-lightbox="img1" data-title="Wetbench plane solvent"><img src="https://static.igem.org/mediawiki/2014/8/89/Wetbench.jpg" width="70%"/></a><br />
 +
      Wetbench plane solvent</td>
 +
      <td class="cntr"><img src="https://static.igem.org/mediawiki/2014/f/f5/Cl6.png" /><br />
 +
      This removes the unexposed photoresist from the wafer using chemical treatment on a wet bench
 +
</td>
 +
    </tr>
-
<p>A standard microfluidic chip is a grid of interconnected channels and chambers. It is usually composed of one or two PDMS layers placed on a glass slide. In our case we used two layers, the so called flow layer and control layer. The bacteria are enclosed between the flow layer and the glass slide. By its shape, the flow layer is responsible for the patterns of the chip. In our case, the pattern consists of several parallel rows of chambers. The control layer comes on top of the flow layer and allows to open or close valves by pressing or releasing water in the corresponding channels. Thus a mechanical pressure can be applied from the control layer on the flow layer, enabling a precise compartmentalization of the chip.</p>
+
    <tr>
 +
      <td><b>8</b></td>
 +
      <td><b>Hard bake</b></td>
 +
      <td class="cntr"><a href="https://static.igem.org/mediawiki/2014/3/3d/Dataplate.jpg" data-lightbox="img1" data-title="DataPlate"><img src="https://static.igem.org/mediawiki/2014/3/3d/Dataplate.jpg" width="70%"/></a><br />
 +
      DataPlate </td>
 +
      <td class="cntr"><img src="https://static.igem.org/mediawiki/2014/f/f5/Cl6.png" /><br />
 +
      Bake 135°C 2 hours, using an oven
 +
</td>
 +
    </tr>
 +
  </tbody>
 +
</table>
-
<p>Once the chip is ready to be used, small tubings of 0.35mm diameter are plugged in the inlets of the chip (see gif below). The tubings that are plugged in the control inlets are loaded with water and enable the opening or closing of valves. The tubings that are plugged into the flow inlets are used to flow bacteria/yeast or various solutions in the chambers. </p>
+
<br/>
 +
<h2 id="flowlayer">Flow layer process outline</h2>
 +
<table class="table table-striped valign-middle">
 +
  <thead>
 +
    <tr>
 +
      <th>Step</th>
 +
      <th>Process description</th>
 +
      <th>Machines</th>
 +
      <th>Cross-section after process</th>
 +
    </tr>
 +
  </thead>
 +
  <tbody>
 +
    <tr>
 +
      <td><b>1</b></td>
 +
      <td><b>Substrate:</b> Si test Priming</td>
 +
      <td class="cntr"><a href="https://static.igem.org/mediawiki/2014/b/b3/YES.jpg" data-lightbox="img1" data-title="YES III"><img src="https://static.igem.org/mediawiki/2014/b/b3/YES.jpg" width="70%"/></a><br />
 +
      YES III</td>
 +
      <td class="cntr"><img src="https://static.igem.org/mediawiki/2014/3/35/Fl1.png" /><br />
 +
      Dehydrate and prime with HMDS, using the oven to create hydrophobic surface on the wafer, to prepare the wafer for coating</td>
 +
    </tr>
-
<p>Picture of the MITOMI Chip and our Smash-Coli chip</p>
+
  <tr>
 +
      <td><b>2</b></td>
 +
      <td><b>Photolith:</b> Resist deposition
 +
Photo Resist : AZ9260 – 14μm
 +
</td>
 +
      <td class="cntr"><a href="https://static.igem.org/mediawiki/2014/c/c2/Evg.jpg" data-lightbox="img1" data-title="EVG 150"><img src="https://static.igem.org/mediawiki/2014/c/c2/Evg.jpg" width="70%"/></a><br />
 +
      EVG 150</td>
 +
      <td class="cntr"><img src="https://static.igem.org/mediawiki/2014/2/26/Fl2.png" /><br />
 +
      A layer of positive photoresist is added on the wafer by spincoating</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
      <td><b>3</b></td>
 +
      <td><b>Rehydratation time</b></td>
 +
      <td class="cntr"></td>
 +
      <td class="cntr">Wait minimum 1 hour, maximum 3 days
 +
</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
      <td><b>4</b></td>
 +
      <td><b>Photolith:</b>UV exposure</td>
 +
      <td class="cntr"><a href="https://static.igem.org/mediawiki/2014/9/91/MaskAligner.jpg" data-lightbox="img1" data-title="Mask Aligner"><img src="https://static.igem.org/mediawiki/2014/9/91/MaskAligner.jpg" width="70%"/></a><br />
 +
      Mask Aligner</td>
 +
      <td class="cntr"><img src="https://static.igem.org/mediawiki/2014/6/66/Fl3.png" /><br />
 +
      The UV lights are exposed through the Mask on the surface of the wafer. By doing so, it imprints the pattern of the design on the PR.
 +
</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
      <td><b>5</b></td>
 +
      <td><b>Develop immediately</b></td>
 +
      <td class="cntr"></td>
 +
      <td class="cntr">Wait maximum 1 hour before develop
 +
</td>
 +
    </tr>
 +
    <tr>
 +
      <td><b>6</b></td>
 +
      <td><b>Photolith:</b> Develop</td>
 +
      <td class="cntr"><a href="https://static.igem.org/mediawiki/2014/c/c2/Evg.jpg" data-lightbox="img1" data-title="EVG 150"><img src="https://static.igem.org/mediawiki/2014/c/c2/Evg.jpg" width="70%"/></a><br />
 +
      EVG 150</td>
 +
      <td class="cntr"><img src="https://static.igem.org/mediawiki/2014/5/5c/Fl4.png" /><br />
 +
      This removes the exposed photoresist from the wafer using chemical treatment with the EVG 150
 +
</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
      <td><b>7</b></td>
 +
      <td><b>Rinse with Deionized water</b></td>
 +
      <td class="cntr"><a href="https://static.igem.org/mediawiki/2014/e/ed/Coillard.jpg" data-lightbox="img1" data-title="Colliard Wetbench"><img src="https://static.igem.org/mediawiki/2014/e/ed/Coillard.jpg" width="70%"/></a><br />
 +
      Coillard Wetbench</td>
 +
      <td class="cntr">Rinse wafers in Quick Dump Rinse then in Ultra Clean bath, using wetbench
 +
</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
      <td><b>8</b></td>
 +
      <td><b>Bake to round edges</b></td>
 +
      <td class="cntr"><a href="https://static.igem.org/mediawiki/2014/3/3d/Dataplate.jpg" data-lightbox="img1" data-title="DataPlate"><img src="https://static.igem.org/mediawiki/2014/3/3d/Dataplate.jpg" width="70%"/></a><br />
 +
      DataPlate</td>
 +
      <td class="cntr"><img src="https://static.igem.org/mediawiki/2014/2/26/Fl5.png" /><br />
 +
      Bake in horizontal position, 160°C 2 hours
 +
</td>
 +
    </tr>
 +
  </tbody>
 +
</table>
 +
 
 +
 
 +
<a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Designing" class="btn btn-primary pull-left" role="button">&lt;- Designing a chip</a>
 +
 
 +
<a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Making/PartII" class="btn btn-primary pull-right" role="button">Next step: Making a chip part II -&gt;</a>
 +
<div class="clearfix"></div>
-
<div class="row">
 
-
<div class="col col-md-6 cntr">
 
-
    <div class="thumbnail">
 
-
<a href="https://static.igem.org/mediawiki/2014/c/c6/Mitomi_che.PNG" data-lightbox="image-1" data-title="Mitomi"><img src="https://static.igem.org/mediawiki/2014/c/c6/Mitomi_che.PNG" alt="Mitomi" width="200" /></a>
 
-
      <div class="caption">
 
-
        <p>MITOMI chip filled with bacteria expressing GFP</p>
 
-
      </div>
 
-
    </div>
 
</div>
</div>
-
<div class="col col-md-6 cntr">
 
-
    <div class="thumbnail">
 
-
<a href="https://static.igem.org/mediawiki/2014/5/51/Killcoli.PNG" data-lightbox="image-1" data-title="Smash-coli"><img src="https://static.igem.org/mediawiki/2014/5/51/Killcoli.PNG" alt="Killcoli" width="200" /></a>
 
-
      <div class="caption">
 
-
        <p>“Smash-coli” chip, here with expression of RFP</p>
 
-
      </div>
 
-
    </div>
 
</div>
</div>
</div>
</div>
 +
 +
 +
<div class="col col-md-3">
 +
<nav id="affix-nav" class="sidebar hidden-sm hidden-xs">
 +
    <ul class="nav sidenav box" data-spy="affix" data-offset-top="200" data-offset-bottom="600">
 +
    <li class="active"><a href="#introductiontophotoresist">Introduction</a></li> 
 +
<li><a href="#processoutline">Mask process and outline</a></li>
 +
        <li><a href="#controllayer">Control layer process outline</a></li>
 +
        <li><a href="#flowlayer">Flow layer process outline</a></li>
 +
    </ul>
 +
</nav>
 +
</div>
</div>
</div>
</div>
</div>

Latest revision as of 01:24, 18 October 2014

<- Designing a chip Next step: Making a chip part II ->


Introduction to photolithography


The following processes will explain how a mask and a positive/negative resist wafer are made. These two components are essential for the creation of our chips, as they are the master plan, the mold for the chip. This is how it works: a mask is used as a mold to make a wafer, and a wafer is used as a mold to make each of the microfluidic chip's layers (control and flow layers).

Mask

Wafers



Here are defined the two main types of photoresist. A photoresist is a light-sensitive material used in several industrial processes, such as photolithography and photoengraving to form a patterned coating on a surface:

- A negative resist is a type of photoresist in which the portion of the photoresist that is exposed to light crosslinks and thus becomes insoluble to the photoresist developer. The unexposed portion of the photoresist is dissolved by the photoresist developer.

- A positive resist is a type of photoresist in which the portion of the photoresist that is exposed to light becomes soluble to the photoresist developer. The portion of the photoresist that is unexposed remains insoluble to the photoresist developer.

Mask process and outline

Step Process description Machines Cross-section after process
1
Cross section of a photolithography mask
2 Laser exposure
Heidelberg DWL200, Laser lithography system

The laser beams on the surface of the photoresist. By doing so, it imprints the pattern of the design on the PR.
3 Developing of the mask
DV10 Mask and Thick positive resist developer

A chemical treatment is used to remove the PR that was exposed by the laser in the previous step, creating the ‘holes’ on the photoresist
4 Etching of the chrome
Coillard Gravure

The chrome is removed at the sites where the resist layer is missing, using an acid bath.
5 Removal of Resist
Coillard Photolithographie

Once the chrome is removed at the precise sites (previous step), the rest of the resist is removed from the whole surface.
6 Use of mask
The mask can now be used to expose its pattern on the wafer using UV light

Control Layer Process outline

Step Process description Machines Cross-section after process
1 Substrate: Wafer Clean
Tepla 300

Clean the wafer using plasma treatment
2 Photolith: Resist deposition Photo Resist : Su8 GM1070 – 30μm
Sawatec

A layer of negative photoresist is added on the wafer by spincoating
3 Relaxation time + Softbake
Sawatec

Softbake wafer using Sawatec hotplate, to solidify the photo resist
4 Photolith:UV exposure
Mask Aligner

The UV lights are exposed through the Mask on the surface of the wafer. By doing so, it imprints the pattern of the design on the PR.
5 Post exposure bake
Sawatec

Bake wafer using Sawatec hotplate
6 Relaxation delay Wait 1 hour – overnight
7 Photolith: Develop
Wetbench plane solvent

This removes the unexposed photoresist from the wafer using chemical treatment on a wet bench
8 Hard bake
DataPlate

Bake 135°C 2 hours, using an oven

Flow layer process outline

Step Process description Machines Cross-section after process
1 Substrate: Si test Priming
YES III

Dehydrate and prime with HMDS, using the oven to create hydrophobic surface on the wafer, to prepare the wafer for coating
2 Photolith: Resist deposition Photo Resist : AZ9260 – 14μm
EVG 150

A layer of positive photoresist is added on the wafer by spincoating
3 Rehydratation time Wait minimum 1 hour, maximum 3 days
4 Photolith:UV exposure
Mask Aligner

The UV lights are exposed through the Mask on the surface of the wafer. By doing so, it imprints the pattern of the design on the PR.
5 Develop immediately Wait maximum 1 hour before develop
6 Photolith: Develop
EVG 150

This removes the exposed photoresist from the wafer using chemical treatment with the EVG 150
7 Rinse with Deionized water
Coillard Wetbench
Rinse wafers in Quick Dump Rinse then in Ultra Clean bath, using wetbench
8 Bake to round edges
DataPlate

Bake in horizontal position, 160°C 2 hours
<- Designing a chip Next step: Making a chip part II ->

Sponsors