Team:UESTC-China/Modeling1

From 2014.igem.org

(Difference between revisions)
 
(58 intermediate revisions not shown)
Line 10: Line 10:
<style>
<style>
 +
#content {
 +
    position: relative;
 +
    width:  1215px;
 +
#    margin-left: 10px;
 +
margin: 0 auto;
 +
    padding: 5px 5px 5px 5px;;
 +
    background: white;
 +
    color: black;
 +
    border-left: 1px solid #444444;
 +
    border-right: 1px solid #444444;
 +
    line-height: 1.5em;
 +
    z-index: 2;
 +
}
 +
 +
    .button
 +
    {       
 +
        display: inline-block;
 +
        white-space: nowrap;
 +
        background-color: #ddd;
 +
        background-image: -webkit-gradient(linear, left top, left bottom, from(#eee), to(#ccc));
 +
        background-image: -webkit-linear-gradient(top, #eee, #ccc);
 +
        background-image: -moz-linear-gradient(top, #eee, #ccc);
 +
        background-image: -ms-linear-gradient(top, #eee, #ccc);
 +
        background-image: -o-linear-gradient(top, #eee, #ccc);
 +
        background-image: linear-gradient(top, #eee, #ccc);
 +
        border: 1px solid #777;
 +
        padding: 0 1.5em;
 +
        margin: 0.5em;
 +
        font: bold 1em/2em Arial, Helvetica;
 +
        text-decoration: none;
 +
        color: #333;
 +
        text-shadow: 0 1px 0 rgba(255,255,255,.8);
 +
        -moz-border-radius: .2em;
 +
        -webkit-border-radius: .2em;
 +
        border-radius: .2em;
 +
        -moz-box-shadow: 0 0 1px 1px rgba(255,255,255,.8) inset, 0 1px 0 rgba(0,0,0,.3);
 +
        -webkit-box-shadow: 0 0 1px 1px rgba(255,255,255,.8) inset, 0 1px 0 rgba(0,0,0,.3);
 +
        box-shadow: 0 0 1px 1px rgba(255,255,255,.8) inset, 0 1px 0 rgba(0,0,0,.3);
 +
    }
        
        
Line 53: Line 92:
#header{
#header{
height: 280px;
height: 280px;
-
background-image:url("https://static.igem.org/mediawiki/2014/a/a3/Newbanner.jpg");
+
background-image:url("https://static.igem.org/mediawiki/2014/4/49/New_New_banner.jpg");
background-position: top center;
background-position: top center;
background-repeat: no-repeat;
background-repeat: no-repeat;
Line 68: Line 107:
background-color: #394264;
background-color: #394264;
width: 1195px;
width: 1195px;
 +
height: 63px;
}
}
Line 297: Line 337:
}
}
#top{
#top{
-
background-image:url('http://fudanigem.phx-2.ifreeurl.com/img/top.png');
+
background-image: url('https://static.igem.org/mediawiki/2014/8/89/Uestc_top2.png');
-
width: 57px;
+
width: 65px;
-
height: 57px;
+
height: 138px;
-
position: fixed;
+
position: fixed;
-
top: 80%;
+
top: 70%;
-
margin-left: 1105px;
+
margin-left: 1200px;
-
cursor: pointer;
+
cursor: pointer;
 +
z-index: 999;
 +
 
}
}
#logo{
#logo{
position: absolute;
position: absolute;
-
background-image: url("https://static.igem.org/mediawiki/2014/9/99/NewLogo.png");
 
width: 154px;
width: 154px;
height: 147px;
height: 147px;
Line 371: Line 412:
-
#SensorEditingArea{position:absolute; left:0px; top:300px; height:12300px; width:1183px; background-color:#ffffff; padding:60px 0px 0px 30px;}
+
#SensorEditingArea{position:absolute; left:0px; top:280px; height:6800px; width:1183px; background-color:#ffffff; padding:60px 0px 0px 30px;}
.SensorEditingAreaClass p{position:relative;left:0px; width:1140px; font-size:23px; font-family: calibri, arial, helvetica, sans-serif;  text-align:justify;}
.SensorEditingAreaClass p{position:relative;left:0px; width:1140px; font-size:23px; font-family: calibri, arial, helvetica, sans-serif;  text-align:justify;}
.SensorEditingAreaClass a{color:#1f8a70; font-weight:bold;}
.SensorEditingAreaClass a{color:#1f8a70; font-weight:bold;}
-
.SectionTitles{position:relative; left:0px; background-color:#1f8a70; padding:0 10px; height:40px; line-height:40px; font-size:24px; font-family: calibri, arial, helvetica, sans-serif; border-bottom:0px; color:#ffffff; font-weight: bold;font-style: Italic; text-align:center; width:1140px; }
+
.SectionTitles{position:relative; left:0px; background-color:#1f8a70; padding:0 10px; height:45px; line-height:40px; font-size:28px; font-family: calibri, arial, helvetica, sans-serif; border-bottom:0px; color:#ffffff; font-weight: bold;font-style: Italic; text-align:center; width:1140px; }
</style>
</style>
Line 383: Line 424:
<body>
<body>
-
<div id="total-wrap">
+
<div id="total-wrap">
-
<div id="header">
+
<div id="header">
-
<div id="emp">
+
<div id="emp">
-
<div id='logo'><a href="https://igem.org"></a></div>
+
<div id='logo'><a href="https://igem.org/Main_Page"><img src="https://static.igem.org/mediawiki/2014/d/da/NewLogo2.png"></a></div>
-
</div>
+
</div>
-
<div id="top-menu">
+
<div id="top-menu">
-
<div class="top-menu-each">
+
<div class="top-menu-each">
-
<a href="https://2014.igem.org/Team:UESTC-China"><p>Home</p></a>
+
<a href="https://2014.igem.org/Team:UESTC-China"><p>Home</p></a>
-
</div>
+
</div>
-
<div class="top-menu-each">
+
<div class="top-menu-each">
-
<div class="arrow"></div>
+
<div class="arrow"></div>
-
<p>Team</p>
+
<p>Team</p>
-
<div class="top-menu-sub">
+
<div class="top-menu-sub">
-
<ul>
+
<ul>
-
<a href="https://2014.igem.org/Team:UESTC-China/Team"><li>Members</li></a>
+
<a href="https://2014.igem.org/Team:UESTC-China/Team"><li>Members</li></a>
-
<a href="https://2014.igem.org/Team:UESTC-China/Attribution"><li>Attribution</li></a>
+
<a href="https://2014.igem.org/Team:UESTC-China/Attribution"><li>Attribution</li></a>
-
<a href="https://igem.org/Team.cgi?year=2014&team_name=UESTC-China"><li>Team Profile</li></a>
+
<a href="https://igem.org/Team.cgi?year=2014&team_name=UESTC-China"><li>Team Profile</li></a>
-
<a href="https://2014.igem.org/Team:UESTC-China/Notebook"><li>Notebook</li></a>
+
<a href="https://2014.igem.org/Team:UESTC-China/Notebook"><li>Notebook</li></a>
-
</ul>
+
</ul>
-
</div>
+
</div>
-
</div>
+
</div>
-
<div class="top-menu-each">
+
 
-
<div class="arrow"></div>
+
 
-
<p>Project</p>
+
<div class="top-menu-each">
-
<div class="top-menu-sub">
+
<div class="arrow"></div>
-
<ul>
+
<p>Project</p>
 +
<div class="top-menu-sub">
 +
<ul>
<a href="https://2014.igem.org/Team:UESTC-China/Project"><li>Overview</li></a>
<a href="https://2014.igem.org/Team:UESTC-China/Project"><li>Overview</li></a>
<a href="https://2014.igem.org/Team:UESTC-China/Design"><li>Design</li></a>
<a href="https://2014.igem.org/Team:UESTC-China/Design"><li>Design</li></a>
<a href="https://2014.igem.org/Team:UESTC-China/result"><li>Result</li></a>
<a href="https://2014.igem.org/Team:UESTC-China/result"><li>Result</li></a>
-
<a href="https://2014.igem.org/Team:UESTC-China/Futurework">
+
<a href="https://2014.igem.org/Team:UESTC-China/Futurework"><li>Future work</li></a>
-
<li>Future work</li></a>
+
<a href="https://2014.igem.org/Team:UESTC-China/Judingform"><li>Judging Criteria</li></a>
-
</ul>
+
</ul>
-
</div>
+
</div>
-
</div>
+
</div>
<div class="top-menu-each">
<div class="top-menu-each">
<div class="arrow"></div>
<div class="arrow"></div>
Line 426: Line 469:
<div class="top-menu-sub">
<div class="top-menu-sub">
<ul>
<ul>
-
<a href="https://2014.igem.org/Team:UESTC-China/Modeling"><li>Modeling</li></a>
+
<a href="https://2014.igem.org/Team:UESTC-China/Modeling"><li>Overview</li></a>
-
 
+
<a href="https://2014.igem.org/Team:UESTC-China/Modeling1"><li>HPS/PHI</li></a>
 +
<a href="https://2014.igem.org/Team:UESTC-China/Modeling2"><li>FALDH/FDH</li></a>
 +
<a href="https://2014.igem.org/Team:UESTC-China/Modeling3"><li>AtAHA2</a>
</ul>
</ul>
</div>
</div>
Line 436: Line 481:
<div class="top-menu-sub">
<div class="top-menu-sub">
<ul>
<ul>
-
<a href="https://2014.igem.org/Team:UESTC-China/Material"><li>BioBrick</li></a>
+
<a href="https://2014.igem.org/Team:UESTC-China/BioBrick"><li>BioBrick</li></a>
<a href="https://2014.igem.org/Team:UESTC-China/Protocol"><li>Protocol</li></a>
<a href="https://2014.igem.org/Team:UESTC-China/Protocol"><li>Protocol</li></a>
-
</ul>
+
</ul>
-
</div>
+
</div>
-
</div>
+
</div>
-
<div class="top-menu-each">
+
<div class="top-menu-each">
-
<div class="arrow"></div>
+
<div class="arrow"></div>
-
<p>Human Practice</p>
+
<p>Human Practice</p>
-
<div class="top-menu-sub">
+
<div class="top-menu-sub">
-
<ul>
+
<ul>
-
<a href="https://2014.igem.org/Team:UESTC-China/HumanPractice.html"><li>Knowledge quiz</li></a>
+
<a href="https://2014.igem.org/Team:UESTC-China/Questionnaire.html"><li>Questionnaire</li></a>
 +
 
 +
<a href="https://2014.igem.org/Team:UESTC-China/Knowledgequiz"><li>Knowledge quiz</li></a>
<a href="https://2014.igem.org/Team:UESTC-China/Lecture.html"><li>Lecture</li></a>
<a href="https://2014.igem.org/Team:UESTC-China/Lecture.html"><li>Lecture</li></a>
<a href="https://2014.igem.org/Team:UESTC-China/Communication.html"><li>Communication</li></a>
<a href="https://2014.igem.org/Team:UESTC-China/Communication.html"><li>Communication</li></a>
-
<a href="https://2014.igem.org/Team:UESTC-China/Questionnaire.html"><li>Questionnaire</li></a>
+
<a href="https://2014.igem.org/Team:UESTC-China/Art"><li>Art</li></a>
-
+
</ul>
-
</ul>
+
</div>
-
</div>
+
</div>
-
</div>
+
 
-
<div class="top-menu-each">
+
<div class="top-menu-each">
-
<div class="arrow"></div>
+
<div class="arrow"></div>
-
<p>Safety</p>
+
<p>Safety</p>
-
<div class="top-menu-sub">
+
<div class="top-menu-sub">
-
<ul>
+
<ul>
-
<a href="https://2014.igem.org/Team:UESTC-China/Safety"><li>Safety</li></a>
+
<a href="https://2014.igem.org/Team:UESTC-China/Safety"><li>Safety</li></a>
-
+
</ul>
-
</ul>
+
</div>
-
</div>
+
</div>
-
</div>
+
 
-
</div>
+
-
</div>
+
Line 477: Line 522:
-
  <h1 style="position:relative; left:0px; padding:15 5px; font-size:35px; font-family: calibri, arial, helvetica, sans-serif; font-weight: bold;font-style: Italic; text-align:center; width:1140px; background-color:#00FF00;">Photosynthetic HCHO assimilation pathway</h1>
+
  <h1 style="color:#1b1b1b; position:relative; left:0px; padding:15 5px; font-size:35px; font-family: calibri, arial, helvetica, sans-serif; font-weight: bold;font-style: Italic; text-align:center; width:1140px;">Photosynthetic formaldehyde assimilation pathway</h1>
  <br/>
  <br/>
-
  <h1 class="SectionTitles" style="text-align:left; width:500px;">Mathematical Principles</h1>
+
  <h1 class="SectionTitles" style=" width:1100px;">Mathematical principles</h1>
<br/>
<br/>
<p style="color:#1b1b1b;">Almost all chemical reactions obey the law of constant proportion:</p>
<p style="color:#1b1b1b;">Almost all chemical reactions obey the law of constant proportion:</p>
Line 507: Line 552:
-
  <h1 class="SectionTitles" style="text-align:left; width:500px;">Photosynthetic HCHO assimilation pathway</h1>
+
  <h1 class="SectionTitles" style=" width:1100px;">Photosynthetic formaldehyde assimilation pathway</h1>
-
<p style="color:#1b1b1b;">
+
-
The metabolism of photosynthetic HCHO assimilation was shown on Fig.1. Since the substrate (Ru5P) and product (F6P) ofthe sequential reactions catalyzed by HPS and PHI are intermediates of the Calvin cycle in plants, photosynthesis could provide sufficient substrates for the reactions catalyzed by HPS and PHI if the two enzymes were expressed in plant(Song, Orita et al. 2010).It has been proved that over-expressing the HPS/PHI fusion protein can enhance the ability of the plants to absorb and assimilate exogenous HCHO(Chen, Yurimoto et al. 2010).In this case, we utilize the mathematical principles described above to analyze the metabolism.
+
<br/>
<br/>
-
<img width="35%" src="https://static.igem.org/mediawiki/2014/d/dc/MFig-1.jpg">
+
<p style="color:#1b1b1b;">The metabolism of photosynthetic formaldehyde assimilation was shown on Fig.1. Since the substrate (Ru5P) and product (F6P) of the sequential reactions catalyzed by HPS and PHI are intermediates of the Calvin cycle in plants, photosynthesis could provide sufficient substrates for the reactions catalyzed by HPS and PHI if the two enzymes were expressed in plant <i>(Song et al., 2010)</i>. It has been proved that over-expressing the HPS/PHI fusion protein can enhance the ability of the plants to absorb and assimilate exogenous formaldehyde <i>(Chen et al., 2010)</i>. In this case, we utilize the mathematical principles described above to analyze the metabolism.</p>
<br/>
<br/>
-
<strong>Fig.1</strong> Schematic diagram of photosynthetic HCHO assimilation pathway. Ru5P, D-ribulose 5-phosphate; Hu6P, D-arabino-3-hexulose 6-phosphate; F6P, fructose 6-phosphate; Xu5P, xylulose 5-phosphate; RuBP, ribulose 1,5-bisphosphate; 3-PGA, glycerate 3-phosphate; FBP, fructose-1,6-bisphosphatase;
+
<div align="center">
-
<br/><br/>
+
<div><img style="width:50% ;" src="https://static.igem.org/mediawiki/2014/3/3f/Regu1.png"></div>
-
Simplify the system (Fig.2), consist of the input of HCHO and CO2, the recycle of Ru5P and the output of F6P:
+
<div><p style="position:relative; left:0px; padding:15 5px; font-size:20px; font-family: calibri, arial, helvetica, sans-serif; font-style: calibri; text-align:justify; width:1100px; color:#1b1b1b;">
 +
 +
<strong>Fig.1</strong> Schematic diagram of photosynthetic formaldehyde assimilation pathway. Ru5P, D-ribulose 5-phosphate; Hu6P, D-arabino-3-hexulose 6-phosphate; F6P, fructose 6-phosphate; Xu5P, xylulose 5-phosphate; RuBP, ribulose 1,5-bisphosphate; 3-PGA, glycerate 3-phosphate; FBP, fructose-1,6-bisphosphatase;
 +
<br>
 +
</p>
 +
</div>
 +
</div>
<br/>
<br/>
-
<img width="35%" src="https://static.igem.org/mediawiki/2014/4/45/MFig-2.jpg">
+
<p style="color:#1b1b1b;">Simplify the system (Fig.2), consist of the input of formaldehyde and CO2, the recycle of Ru5P and the output of F6P:</p>
<br/>
<br/>
-
<strong>Fig.2</strong> A simplified version of photosynthetic HCHO assimilation pathway
+
<div align="center">
-
<br/><br/>
+
<div><img style="width:50% ;" src="https://static.igem.org/mediawiki/2014/4/45/MFig-2.jpg"></div>
-
The mechanism of this system can be represented by a set of chemical reactions, as shown below.
+
<div><p style="position:relative; left:10px; padding:15 5px; font-size:20px; font-family: calibri, arial, helvetica, sans-serif; font-style: calibri; text-align:justify; width:600px; color:#1b1b1b;">
 +
 +
<strong>Fig.2</strong> A simplified version of photosynthetic HCHO assimilation pathway
 +
<br>
 +
</p>
 +
</div>
 +
</div>
<br/>
<br/>
-
<img width="35%" src="https://static.igem.org/mediawiki/2014/8/86/M7.gif"> (7)
+
<p style="color:#1b1b1b;">The mechanism of this system can be represented by a set of chemical reactions, as shown below.</p>
<br/>
<br/>
-
a, b and their linear combination were the constant proportion of reactions. If a/b=m(or k1/k2∝m), then m represents the competition between J1 and J2. We know that a+b=3 (base on the traditional calvin cycle), then Equ.7 can transform to below and the reaction rate also shown in Equ.8:
+
<p style="color:#1b1b1b;"><img style="width:40%; margin-left:15px;" src="https://static.igem.org/mediawiki/2014/8/86/M7.gif"><em style="position:absolute; right:250px; top: 105px;">(7)</em></p>
<br/>
<br/>
-
<img width="35%" src="https://static.igem.org/mediawiki/2014/d/d2/M8.gif"> (8)
+
<p style="color:#1b1b1b;"><i>a</i>, <i>b</i> and their linear combination were the constant proportion of reactions. If <i>a/b</i>=<i>m</i> (or k1/k2∝m), then <i>m</i> represents the competition between <i>J1</i> and <i>J2</i>. We know that <i>a</i>+<i>b</i>=3 (base on the traditional calvin cycle), then Equ.7 can transform to below and the reaction rate also shown in Equ.8:</p>
<br/>
<br/>
-
Therefore, the dynamic equation group of the reaction system was obtained as shown in Equ.9:
+
<p style="color:#1b1b1b;"><img style="width:60%; margin-left:15px;" src="https://static.igem.org/mediawiki/2014/d/d2/M8.gif"><em style="position:absolute; right:250px; top: 135px;">(8)</em></p>
<br/>
<br/>
-
<img width="35%" src="https://static.igem.org/mediawiki/2014/7/7b/M9.gif"> (9)
+
<p style="color:#1b1b1b;">Therefore, the dynamic equation group of the reaction system was obtained as shown in Equ.9:</p>
<br/>
<br/>
-
We can simplify the function into an elegant form, a1, a2, b1, b2 and care parameters.
+
<p style="color:#1b1b1b;"><img style="width:80%; margin-left:15px;" src="https://static.igem.org/mediawiki/2014/7/7b/M9.gif"><em style="position:absolute; right:150px; top: 55px;">(9)</em></p>
<br/>
<br/>
-
<img width="35%" src="https://static.igem.org/mediawiki/2014/8/85/M10.gif"> (10)
+
<p style="color:#1b1b1b;">We can simplify the function into an elegant form, <i>a1, a2, b1, b2</i> and <i>c</i> are parameters.</p>
-
<br/><br/>
+
-
By changing the value of those parameters (k1, k2…), we obtained the relationship (Fig.3)between the concentration of different components (Ru5P, F6P and HCHO)versus the time.
+
-
<br/>
+
-
<img width="35%" src="https://static.igem.org/mediawiki/2014/f/fa/MFig-3.jpg">
+
-
<br/>
+
-
<strong>Fig.3</strong> The diagram of concentration versus time. A for Ru5P and F6P, B for HCHO and C for those three components
+
<br/>
<br/>
-
From Fig.3, we found that the components tend to be the steady state when time goes by.Means that when the formaldehyde into the plant cell, the original steady state was broken, but after a period of time, the cells will restore homeostasis which indicated that the indoor formaldehyde has been absorbed by the plant. For figure 3B, in the initial stage, formaldehydewill continue to grow due to the delayed effects of reaction; subsequently,the concentration of formaldehyde begins to decrease with time and finally tends to be the steady state.
+
<p style="color:#1b1b1b;"><img style="width:75%; margin-left:15px;" src="https://static.igem.org/mediawiki/2014/5/57/10.gif"><em style="position:absolute; right:150px; top: 100px;">(10)</em></p>
<br/><br/>
<br/><br/>
-
<strong>Meaning of the parameters:</strong>
+
<p style="color:#1b1b1b;"><strong>Meaning of the parameters:</strong>
<br/>
<br/>
-
k1,k3 related to ATP and NADPH2;
+
<i>k1,k3</i> related to ATP and NADPH2;
<br/>
<br/>
-
k2related toHPS/PHI;
+
<i>k2</i> related to HPS/PHI;
<br/>
<br/>
-
k4: the speed of F6P transferred to outside;
+
<i>k4</i>: the speed of F6P transferred to outside;
<br/>
<br/>
-
m:the competition between J1 and J2;
+
<i>m</i>: the competition between <i>J1</i> and <i>J2</i>;
<br/>
<br/>
[F0]: the initial concentration of F6P;
[F0]: the initial concentration of F6P;
<br/>
<br/>
[C0]: the initial concentration of formaldehyde.
[C0]: the initial concentration of formaldehyde.
-
<br/><br/>
+
<br/><br/></p>
-
+
<h1 class="SectionTitles" style="width:1100px;">Results</h1>
-
</p>
+
-
 
+
-
+
-
  <h1 class="SectionTitles" style="width:345px;"> Folate-independent pathway</h1>
+
-
<p style="color:#1b1b1b;">
+
-
The metabolism of folate-independent pathway was shown on Fig.4.
+
<br/>
<br/>
-
<img width="35%" src="https://static.igem.org/mediawiki/2014/5/5c/MFig-4.jpg">
+
<p style="color:#1b1b1b;">By changing the value of those parameters (<i>k1, k2</i> … ), we obtained the relationship (Fig.3) between the concentration of different components (Ru5P, F6P and formaldehyde) versus the time. </p>
<br/>
<br/>
-
<strong>Fig.4</strong> Schematic diagram offormaldehyde metabolic pathways in plant. SMM cycle, S-methylmethionine cycle
+
<div align="center">
 +
<div><img style="width:60% ;" src="https://static.igem.org/mediawiki/2014/d/d2/Uestc_newModel1.jpg"></div>
 +
<div><p style="position:relative; left:60px; padding:15 5px; font-size:20px; font-family: calibri, arial, helvetica, sans-serif; font-style: calibri; text-align:justify; width:1050px; color:#1b1b1b;">
 +
 +
<strong>Fig.3</strong> The diagram of concentration versus time. A for Ru5P and F6P, B for HCHO and C for those three components
 +
<br/>
 +
<br/>
 +
</p>
 +
</div>
 +
</div>
 +
<p style="color:#1b1b1b;">From Fig.3, we found that the components tend to be the steady state when time goes by. Means that when the formaldehyde absorbed into the plant cell, the original steady state would be broken, but after a period of time, the cells will restore homeostasis which indicated that the indoor formaldehyde has been absorbed by the plant. For figure 3B, in the initial stage, formaldehydewill continue to grow due to the delayed effects of reaction; subsequently,the concentration of formaldehyde begins to decrease with time and finally tends to be the steady state.</p>
<br/>
<br/>
-
Simplify the system(Fig.5), consist of the input of HCHO and the recycle of HCOOH:
+
<h1 class="SectionTitles" style=" width:1100px;">Link to other modeling</h1>
 +
<a href="https://2014.igem.org/Team:UESTC-China/Modeling2" class="button">Folate-independent pathway</a>
 +
<br/>
 +
<a href="https://2014.igem.org/Team:UESTC-China/Modeling3" class="button">Modeling of stoma</a>
<br/>
<br/>
-
<img width="35%" src="https://static.igem.org/mediawiki/2014/c/ce/MFig-5.jpg">
 
-
<strong>Fig.5</strong> A simplified version of folate-independent pathway. FTS, 10-Formyl-THF synthetase.
 
<br/>
<br/>
-
Some research indicated that the activity of FTS intobacco was low and we ignored this pathway in our system. The chemical reactions of this formaldehyde metabolism are shown below.
+
<br/>
-
<br/>
+
<h1 class="SectionTitles" style="width:1100px;">Reference</h1>
-
<img width="35%" src="https://static.igem.org/mediawiki/2014/6/6b/M11.gif"> (11)
+
<p style="position:relative; left:0px; padding:15 5px; font-size:20px; font-family: calibri, arial, helvetica, sans-serif; font-style: Italic; text-align:justify; color:#1b1b1b;">Chen, L. M., H. Yurimoto, K. Z. Li, I. Orita, M. Akita, N. Kato, Y. Sakai and K. Izui (2010). "Assimilation of formaldehyde in transgenic plants due to the introduction of the bacterial ribulose monophosphate pathway genes." <b>Biosci Biotechnol Biochem</b> 74(3): 627-635.</p>
-
<br/>
+
<p style="position:relative; left:0px; padding:15 5px; font-size:20px; font-family: calibri, arial, helvetica, sans-serif; font-style: Italic; text-align:justify; color:#1b1b1b;">Song, Z., I. Orita, F. Yin, H. Yurimoto, N. Kato, Y. Sakai, K. Izui, K. Li and L. Chen (2010). "Overexpression of an HPS/PHI fusion enzyme from Mycobacterium gastri in chloroplasts of geranium enhances its ability to assimilate and phytoremediate formaldehyde." <b>Biotechnol Lett</b> 32(10): 1541-1548.</p>
-
where parametera is a constant which means the proportion of HCOOH into the calvin cycle. The dynamic equation group of the reaction system can be obtained:
+
 
-
<br/>
+
-
<img width="35%" src="https://static.igem.org/mediawiki/2014/4/43/M12.gif"> (12)
+
-
<br/>
+
-
By changing the value of the parameters (k0, k1…), we obtained the relationship (Fig.6) between the concentration of different components (HCOOH and HCHO) versus the time.
+
-
<br/>
+
-
<img width="35%" src="https://static.igem.org/mediawiki/2014/6/6d/MFig-6.jpg">
+
-
<br/>
+
-
<strong>Fig.6</strong> The diagram of concentration versus time.
+
-
<br/>
+
-
We found that the components tend to be the steady state when time goes by. Means that when the formaldehyde into the plant cell, the original steady state was broken, but after a period of time, the cells will restore homeostasis.
+
-
<br/><br/>
+
-
 
+
-
</p>
+
-
  <h1 class="SectionTitles" style="width:245px;"> Model of stoma</h1>
+
-
<p style="color:#1b1b1b;">
+
-
While formaldehyde diffused into plant cells through the stoma, it suffered a series of obstruction or resistance of diffusion. Subsequently, a range of complex chemical reactions activated when the formaldehyde in cell diffused intercellular space. By analyzing the process, the molecule of formaldehyde diffused into cell through the stoma, we found the reason of the happening process is the mass transportcaused by the uneven distribution of formaldehyde density. Therefore, the formaldehyde molecular diffusion velocity distribution meets the maxwell speed distribution function in normal temperature conditions. That means the number of formaldehyde encountered the unit leaf areawithin per unit time along the x-axis direction were obtained by the below equation.
+
-
<br/>
+
-
<img width="35%" src="https://static.igem.org/mediawiki/2014/a/ae/Ms1.gif">(1)
+
-
<br/>
+
-
where the vx, vyand vz are the components of velocity of the gas molecules on the x-axis, y-axis and z-axis, respectively.  is the gas molecule maxwell speed distribution function. ? is the number of gas molecule diffused into unit leaf areawithin per unit time. S,t is the leaf area and time, respectively. In equation  , the n stands for the number of formaldehyde in air, m for molecular weight of HCHO, k for boltzmann constant and T for temperature. From Equ.1, we got:
+
-
<br/>
+
-
<img width="35%" src="https://static.igem.org/mediawiki/2014/4/42/Ms2.gif">(2)
+
-
<br/>
+
-
We knew that the average velocity of gas molecule in temperature Tcan be shown as:
+
-
<br/>
+
-
<img width="35%" src="https://static.igem.org/mediawiki/2014/b/b8/Ms3.gif">(3)
+
-
<br/>
+
-
substitute into Equ.2, we got:
+
-
<br/>
+
-
<img width="35%" src="https://static.igem.org/mediawiki/2014/8/8a/Ms4.gif">(4)
+
-
<br/>
+
-
Molecular mass of the formaldehyde from high concentration along the direction of diffusion of low concentrationwithinthe unit leaf area per unit time can be described by:
+
-
<br/>
+
-
<img width="35%" src="https://static.igem.org/mediawiki/2014/8/85/Ms5.gif">(5)
+
-
<br/>
+
-
where ?b and ?a stand for the number of gas molecules inside stoma and outside stoma.△ρ for the density difference. We also assumed that the temperature and humidity are constants.The stomatal conductance (Gs) can be defined which the molecular mass diffused into plantwithinthe unit leaf area and per unit time.
+
-
<br/>
+
-
<img width="35%" src="https://static.igem.org/mediawiki/2014/4/44/Ms6.gif">(6)
+
-
<br/>
+
-
According to hydrodynamics, the compressible gas exits the continuity equation showed below if the temperature and humidity remain unchanged.
+
-
<br/>
+
-
<img width="35%" src="https://static.igem.org/mediawiki/2014/a/a6/Ms7.gif">(7)
+
-
<br/>
+
-
where C stands for concentration. The unit of MC/St is μmolHCHO?m–2?s–1, stands for the nubmer of formaldehyde absorbed by the plantwithinthe unit leaf area and per unit time.Substitute into Equ.6:  
+
-
<br/>
+
-
<img width="35%" src="https://static.igem.org/mediawiki/2014/d/d3/Ms8.gif">(8)
+
-
<br/>
+
-
We assumed parameter P stands for the net absorption rate for plant leaf:  
+
-
<br/>
+
-
<img width="35%" src="https://static.igem.org/mediawiki/2014/7/7b/Ms9.gif">(9)
+
-
<br/>
+
-
The Pindicated the absorbing ability of formaldehyde. In our project, we assume P is a constant.η is the ratio of formaldehyde used in the reaction. Noted that if η=0, it means all the gases absorbed in plant do not participate in any chemical reaction. If η=1, it means all the gases participated in the chemical reaction and were absorbed by those reaction. Substitute into Equ.8, we obtained:
+
-
<br/>
+
-
<img width="35%" src="https://static.igem.org/mediawiki/2014/b/b9/Ms10.gif">(10)
+
-
<br/>
+
-
where C stands for the concentration difference inside and outside stoma. Therefore, Equ.10 is the relationship between stomatal conductance and net absorption rate of plant leaf, concentration difference inside and outside stoma when the temperature and humidity remain unchanged.It indicated that plant leaf stomatal conductance and net HCHO absorption rate is proportional and inversely proportional to the concentration difference.
+
-
<br/><br/>
+
-
In future work, we would like to clone the stomatal regulation gene, AtAHA2, to the expression vector.Due to its powerful function of enhancing the degree of stomatal opening, we assumed that the gene can improve the absorption efficiency of formaldehyde. Therefore, in transgenic tobacco, the parameter ηis larger than that in the wild type plants. We plotted the two situations and the diagram was shown in Fig.1.
+
-
<br/>
+
-
<img width="35%" src="https://static.igem.org/mediawiki/2014/4/45/MsFig-1.jpg">
+
-
<br/>
+
-
Fig.1 The relationship between stomatal conductance and the concentration of formaldehyde in air for differ η. In the situation of same stomatal conductance, the concentration of formaldehyde in air for transgenic tobacco is less than that of wild type tobacco, which means the gene AtAHA2 can improve the absorption efficiency of formaldehyde.
+
-
<br/><br/>
+
-
+
-
+
-
+
-
+
-
+
-
 
+
-
</p>
+
   
   
Line 665: Line 650:
</div>
</div>
-
/*back to top*/
+
 
-
<div style="display: none;" id="rocket-to-top">
+
-
<div style="opacity:0;display: block;" class="level-2"></div>
+
-
<div class="level-3"></div>
+
-
</div>
+
<script type="text/javascript" src="http://code.jquery.com/jquery-1.10.1.min.js"></script>
<script type="text/javascript" src="http://code.jquery.com/jquery-1.10.1.min.js"></script>

Latest revision as of 01:55, 18 October 2014

UESTC-China