Team:ETH Zurich/modeling/reactions
From 2014.igem.org
(Difference between revisions)
(3 intermediate revisions not shown) | |||
Line 4: | Line 4: | ||
$$c = \pm\sqrt{a^2 + b^2}$$ | $$c = \pm\sqrt{a^2 + b^2}$$ | ||
$$\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }$$ | $$\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }$$ | ||
- | $$ | + | $$\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)$$ |
- | $$f(x) = \int_{-\infty}^\infty | + | $$f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \,d\xi |
- | + | ||
- | + | ||
$$ | $$ | ||
+ | $$\frac{d[Bxb1]}{dt}=-2 k_{dimBxb1}[Bxb1]^2+ 2 k_{-dimBxb1}[DBxb1]-d_{Bxb1}[Bxb1]$$ | ||
+ | $$\frac{d[DBxb1]}{dt}=-k_{DNABxb1}[DBxb1][SI_{Bxb1}]+k_{-DNABxb1}[SA_{Bxb1}]+k_{dimBxb1}[Bxb1]^2-k_{-dimBxb1}[DBxb1a]-d_{DBxb1}[DBxb1]$$ | ||
+ | |||
+ | $$\frac{d[SA_{Bxb1}]}{dt}=k_{DNABxb1}[DBxb1][SI_{Bxb1}]-k_{-DNABxb1}[SA_{Bxb1}]$$ | ||
<html></article></html> | <html></article></html> | ||
{{:Team:ETH Zurich/tpl/foot}} | {{:Team:ETH Zurich/tpl/foot}} |
Latest revision as of 13:33, 11 October 2014
Reactions
$$\frac{d[DBxb1]}{dt}=-k_{DNABxb1}[DBxb1][SI_{Bxb1}]+k_{-DNABxb1}[SA_{Bxb1}]+k_{dimBxb1}[Bxb1]^2-k_{-dimBxb1}[DBxb1a]-d_{DBxb1}[DBxb1]$$
$$\frac{d[SA_{Bxb1}]}{dt}=k_{DNABxb1}[DBxb1][SI_{Bxb1}]-k_{-DNABxb1}[SA_{Bxb1}]$$