Team:CityU HK/notebook/safety
From 2014.igem.org
(53 intermediate revisions not shown) | |||
Line 5: | Line 5: | ||
table#parts{ | table#parts{ | ||
- | border: | + | border: 2px solid #bdc3c7; |
width: 70%; | width: 70%; | ||
text-align: center; | text-align: center; | ||
margin-left:auto; | margin-left:auto; | ||
margin-right:auto; | margin-right:auto; | ||
+ | margin-bottom: 100px; | ||
padding: 3px 3px 3px 3px; | padding: 3px 3px 3px 3px; | ||
} | } | ||
table td, table th { | table td, table th { | ||
- | border: | + | border: 2px solid #bdc3c7; |
padding: 5px 5px 5px 5px; | padding: 5px 5px 5px 5px; | ||
} | } | ||
h1.title{ | h1.title{ | ||
+ | color: #676767; | ||
+ | text-shadow: 0px 2px 0px rgba(0, 0, 0, 0.2); | ||
font-size:36px; | font-size:36px; | ||
padding-top: 30px;} | padding-top: 30px;} | ||
Line 28: | Line 31: | ||
h2#comtent{font-size:25px;} | h2#comtent{font-size:25px;} | ||
- | p.content{font-size:18px; | + | p.content{font-size:18px; |
- | text-align: justify; | + | text-align: justify;} |
+ | |||
+ | p.paragraph{font-size:18px; | ||
+ | padding-left: 15%; | ||
+ | padding-right: 15%;} | ||
+ | |||
+ | td a { | ||
+ | color: #3cc;} | ||
+ | |||
+ | td a:hover { | ||
+ | color: orange; | ||
+ | text-decoration: none;} | ||
+ | |||
+ | #main .col-md-12 { | ||
+ | background: #F0EEEA; | ||
+ | padding-bottom: 40px; | ||
+ | padding-left: 1%; | ||
+ | padding-right:1%; | ||
+ | border-radius: 20px; | ||
+ | margin-bottom: 40px; | ||
+ | margin: 40px auto; | ||
+ | } | ||
</style> | </style> | ||
<body> | <body> | ||
- | <center><h1 class="title"><b>Safety</b></h1></center | + | <div id="main"> |
+ | <br> | ||
+ | <center><h1 class="title"><b>Safety</b></h1></center> | ||
Line 59: | Line 85: | ||
<tr> | <tr> | ||
<td> | <td> | ||
- | <p> E. coli K 12</p> | + | <p> <i>E. coli</i> K 12</p> |
</td> | </td> | ||
Line 71: | Line 97: | ||
<td> | <td> | ||
- | <p class="content"> E. coli K-12 is considered as having no or low individual and community risk. It is unlikely to cause human or animal disease.</p> | + | <p class="content"> <i>E. coli</i> K-12 is considered as having no or low individual and community risk. It is unlikely to cause human or animal disease.</p> |
</td> | </td> | ||
</tr> | </tr> | ||
Line 77: | Line 103: | ||
- | <h2 id="sub">The | + | <h2 id="sub">The parts we used for this project :</h2> |
<table id="parts"> | <table id="parts"> | ||
<tr> | <tr> | ||
Line 103: | Line 129: | ||
<tr> | <tr> | ||
<td> | <td> | ||
- | <p> BBa_K1472601 ( | + | <p><a href="http://parts.igem.org/Part:BBa_K1472601" target="_blank"> BBa_K1472601 <br>(Leaderless thioesterase)</p> |
</td> | </td> | ||
Line 111: | Line 137: | ||
<td> | <td> | ||
- | <p>Escherichia coli K 12</p> | + | <p><i>Escherichia coli</i> K 12</p> |
</td> | </td> | ||
Line 125: | Line 151: | ||
<tr> | <tr> | ||
<td> | <td> | ||
- | <p> BBa_K1472606 ( | + | <p><a href="http://parts.igem.org/Part:BBa_K1472606" target="_blank"> BBa_K1472606 <br>(TetR repressible FadL & FadD generator)</p> |
</td> | </td> | ||
Line 133: | Line 159: | ||
<td> | <td> | ||
- | <p>Escherichia coli K 12</p> | + | <p><i>Escherichia coli</i> K 12</p> |
</td> | </td> | ||
Line 149: | Line 175: | ||
<tr> | <tr> | ||
<td> | <td> | ||
- | <p> | + | <p><a href="http://parts.igem.org/Part:BBa_K1472610" target="_blank"> BBa_K1472610 <br>(Delta 15 desaturase)</p> |
</td> | </td> | ||
Line 157: | Line 183: | ||
<td> | <td> | ||
- | <p>Synechocystis sp. PCC6803</p> | + | <p><i>Synechocystis sp.</i> PCC6803</p> |
</td> | </td> | ||
Line 165: | Line 191: | ||
<td> | <td> | ||
- | <p class="content"> | + | <p class="content"> It encodes the delta 15 desaturase which catalyses the conversion of linoleic acid (18:2) into alpha-linolenic acid, ALA (18:3) by adding a cis-doube bond at carbon 15 </p> |
</td> | </td> | ||
</tr> | </tr> | ||
- | |||
+ | </table> | ||
+ | <div class="container"><div class="row"><div class="col-md-12" > | ||
+ | <h2 id="sub">General public Safety :</h2> | ||
+ | <p class="paragraph"> | ||
+ | All E. coli strains used in this project are attenuated mutant strains that are unlikely to survive/propagate in the environment outside the laboratory as they harbour many genetic mutations in their genome. <br><br> | ||
+ | To reduce the risk of biological materials escaping from the lab, all bacterial strains are kept and stored in designated refrigerators (before and after all experiments) in the supervisor’s (Dr. Richard Kong) laboratory which is not accessible to the general public. The lab where iGEM experiments are conducted is also not accessible by people of the general public because all lab workers need to be authorized to work in the lab and are required to carry a “Name badge”. | ||
+ | </p> | ||
+ | </div></div></div> | ||
+ | <div class="container"><div class="row"><div class="col-md-12" > | ||
+ | <h2 id="sub">Environmental Safety:</h2> | ||
+ | <p class="paragraph"> | ||
+ | Possible risks <b>:</b> Spillage of bacterial cultures or organic wastes/solutions <br> | ||
+ | Solution: Spillages will be immediately dealt with in the lab using appropriate disinfection procedures (e.g. disinfection with antibacterial detergents) and wipe down benches surface with 70% ethanol.<br><br> | ||
+ | Organic solvents, biological materials and wastes (microorganisms) and plastic-wares are collected in separate waste containers for collection by technical staff. Biological wastes are treated with bleach and detergent and subsequently autoclaved to kill off all live microorganisms. | ||
+ | </p> | ||
+ | </div></div></div> | ||
+ | <div class="container"><div class="row"><div class="col-md-12" > | ||
+ | <h2 id="sub">What new risks might arise from our product growth? </h2> | ||
+ | <p class="paragraph"> | ||
+ | If the product created in this project (ALA) were to be prepared or produced in large scale in a commercial setting, the product would be tested extensively beforehand using cell culture and/or animal models and finally in humans for their safety, toxicity, and mutagenicity before it can be certified for use as a health supplement. | ||
+ | </p> | ||
+ | </div></div></div> | ||
+ | <br><br> | ||
+ | </div> <!-- end of #main --> | ||
</body> | </body> | ||
</html> | </html> | ||
+ | {{:Team:CityU_HK/Template/footer}} |
Latest revision as of 18:11, 17 October 2014
Safety
The organisms we used for this project :
Species |
Strain no. / name |
Risk Group |
Any risk to humans? |
E. coli K 12 |
DH5α |
1 |
E. coli K-12 is considered as having no or low individual and community risk. It is unlikely to cause human or animal disease. |
The parts we used for this project :
Part number |
Source of the physical DNA |
What species does this part originally come from ? |
Risk Group |
The function of the parts |
City University of Hong Kong |
Escherichia coli K 12 |
1 |
A protein that catalyzes the conversion of fatty acyl-ACP (acyl carrier protein) or fatty acyl-CoA to free fatty acids |
|
City University of Hong Kong |
Escherichia coli K 12 |
1 |
A TetR repressible construct encoding the FadD and FadL intermembrane proteins. |
|
Life Technologies Limited |
Synechocystis sp. PCC6803 |
1 |
It encodes the delta 15 desaturase which catalyses the conversion of linoleic acid (18:2) into alpha-linolenic acid, ALA (18:3) by adding a cis-doube bond at carbon 15 |
General public Safety :
All E. coli strains used in this project are attenuated mutant strains that are unlikely to survive/propagate in the environment outside the laboratory as they harbour many genetic mutations in their genome.
To reduce the risk of biological materials escaping from the lab, all bacterial strains are kept and stored in designated refrigerators (before and after all experiments) in the supervisor’s (Dr. Richard Kong) laboratory which is not accessible to the general public. The lab where iGEM experiments are conducted is also not accessible by people of the general public because all lab workers need to be authorized to work in the lab and are required to carry a “Name badge”.
Environmental Safety:
Possible risks : Spillage of bacterial cultures or organic wastes/solutions
Solution: Spillages will be immediately dealt with in the lab using appropriate disinfection procedures (e.g. disinfection with antibacterial detergents) and wipe down benches surface with 70% ethanol.
Organic solvents, biological materials and wastes (microorganisms) and plastic-wares are collected in separate waste containers for collection by technical staff. Biological wastes are treated with bleach and detergent and subsequently autoclaved to kill off all live microorganisms.
What new risks might arise from our product growth?
If the product created in this project (ALA) were to be prepared or produced in large scale in a commercial setting, the product would be tested extensively beforehand using cell culture and/or animal models and finally in humans for their safety, toxicity, and mutagenicity before it can be certified for use as a health supplement.
Copyright © iGEM CityU HK 2014. All Rights Reserved