Team:EPF Lausanne/Overview

From 2014.igem.org

(Difference between revisions)
 
(418 intermediate revisions not shown)
Line 6: Line 6:
<!--  here ends the section that changes the default wiki template to a white full width background -->
<!--  here ends the section that changes the default wiki template to a white full width background -->
 +
<!-- MENU -->
<!-- MENU -->
 +
  <nav class="navbar navbar-default navbar_alt" role="navigation">
 +
    <div class="container-fluid">
 +
      <!-- Brand and toggle get grouped for better mobile display -->
 +
      <div class="navbar-header">
 +
        <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
 +
        <span class="sr-only">Toggle navigation</span>
 +
        <span class="icon-bar"></span>
 +
        <span class="icon-bar"></span>
 +
        <span class="icon-bar"></span>
 +
        </button>
 +
        <a class="navbar-brand" href="https://2014.igem.org/Team:EPF_Lausanne"><img src="https://static.igem.org/mediawiki/2014/d/dc/LogoEPFL.png" alt="" /></a>
 +
      </a>
 +
    </div>
 +
    <!-- Collect the nav links, forms, and other content for toggling -->
 +
    <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
 +
      <ul class="nav navbar-nav navbar-right">
 +
        <div class="nav-collapse">
 +
          <ul class="nav">
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne">Home</a></li>
 +
            <li class="dropdown">
 +
              <a href="#" class="dropdown-toggle active" data-toggle="dropdown">Project <span class="caret"></span></a>
 +
              <ul class="dropdown-menu" role="menu">
 +
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Overview" class="active">Overview</a></li>
 +
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Stress Responsive Bacteria</a></li>
 +
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">Osmo Responsive Yeast</a></li>
 +
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics">Microfluidics</a></li>
 +
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Hardware">Hardware</a></li>
 +
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Applications">Applications</a></li>
 +
                <!--            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
 +
              -->          </ul>
 +
            </li>
 +
            <li class="dropdown">
 +
              <a href="#" class="dropdown-toggle" data-toggle="dropdown">Achievements <span class="caret"></span></a>
 +
              <ul class="dropdown-menu" role="menu">
 +
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Results">Results</a></li>
 +
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Data">Data</a></li>
 +
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Judging">Judging</a></li>
 +
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Parts">Parts</a></li>
 +
              </ul>
 +
            </li>
 +
            <li class="dropdown">
 +
              <a href="#" class="dropdown-toggle" data-toggle="dropdown">Policy &amp; Practices <span class="caret"></span></a>
 +
              <ul class="dropdown-menu" role="menu">
 +
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
 +
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Safety">Bio Safety</a></li>
 +
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/PolicyPractice">Metafluidics</a></li>
 +
                <!--            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
 +
              -->          </ul>
 +
            </li>
 +
            <li class="dropdown">
 +
              <a href="#" class="dropdown-toggle" data-toggle="dropdown">Notebook <span class="caret"></span></a>
 +
              <ul class="dropdown-menu" role="menu">
 +
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Bacteria">Bacteria</a></li>
 +
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Yeast">Yeast</a></li>
 +
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Microfluidics">Microfluidics</a></li>
 +
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Protocol">Protocols</a></li>
 +
              </ul>
 +
            </li>
 +
            <li class="dropdown">
 +
              <a href="#" class="dropdown-toggle" data-toggle="dropdown">Team <span class="caret"></span></a>
 +
              <ul class="dropdown-menu" role="menu">
 +
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook">Timeline</a></li>
 +
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Team">Meet us!</a></li>
 +
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Attributions">Attributions</a></li>
 +
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Acknowledgments">Acknowledgments</a></li>
 +
              </ul>
 +
            </li>
 +
          </div>
 +
        </ul>
 +
        </div><!-- /.navbar-collapse -->
 +
        </div><!-- /.container-fluid -->
 +
      </nav>
 +
 +
<!-- END MENU -->
 +
 +
<!-- ABSTRACT -->
 +
-
<div id="headerSection">
 
<div class="container">
<div class="container">
-
<div class="span3 logo"><a href="https://2014.igem.org/Team:EPF_Lausanne"><img src="https://static.igem.org/mediawiki/2014/d/dc/LogoEPFL.png" alt="" /></a></div>
+
<div class="box" id="boxbread">
-
+
<ol class="breadcrumb breadcrumb-arrow">
-
  <div class="navbar">
+
                  <li><a href="https://2014.igem.org/Team:EPF_Lausanne"><i class="glyphicon glyphicon-home"></i> Home</a></li>
 +
                  <li class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown"><i class="glyphicon glyphicon-cog"></i> Project <b class="caret"></b></a>
 +
                    <ul class="dropdown-menu">
 +
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Stress Responsive Bacteria</a></li>
 +
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">Osmo Responsive Yeast</a></li>
 +
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics">Microfluidics</a></li>
 +
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Hardware">Hardware</a></li>
 +
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Applications">Applications</a></li>
 +
                    </ul>
 +
                  </li>
 +
                  <li class="active"><span><i class="glyphicon glyphicon-picture"></i> Overview</span></li>
 +
                </ol>
 +
</div>
 +
<div class="row">
-
    <div class="nav-collapse">
+
<div class="col col-md-9">
-
      <ul class="nav">
+
-
        <li class="dropdown" class="active">
+
-
          <a href="https://2014.igem.org/Team:EPF_Lausanne" class="dropdown-toggle" data-toggle="dropdown">Project <span class="caret"></span></a>
+
-
          <ul class="dropdown-menu" role="menu">
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Overview">Overview</a></li>
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Applications">Applications</a></li>
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practice</a></li>
+
-
          </ul>
+
-
        </li>
+
-
        <li class="dropdown">
 
-
          <a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook" class="dropdown-toggle" data-toggle="dropdown">Notebook <span class="caret"></span></a>
 
-
          <ul class="dropdown-menu" role="menu">
 
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Protocol">Protocol</a></li>
 
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Data">Data</a></li>
 
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Safety">Safety</a></li>
 
-
          </ul>
 
-
        </li>
 
-
      <li class="dropdown">
+
<div class="whitebg box">
-
          <a href="https://2014.igem.org/Team:EPF_Lausanne/Team" class="dropdown-toggle" data-toggle="dropdown">Team <span class="caret"></span></a>
+
<!-- PROJECT -->
-
          <ul class="dropdown-menu" role="menu">
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Attributions">Attributions</a></li>
+
-
          </ul>
+
-
        </li>
+
-
      <li class="dropdown">
+
<div class="align-justify">
-
          <a href="https://2014.igem.org/Team:EPF_Lausanne/Team" class="dropdown-toggle" data-toggle="dropdown">Achievements <span class="caret"></span></a>
+
-
          <ul class="dropdown-menu" role="menu">
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Judging">Judging</a></li>
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Parts">Parts</a></li>
+
-
          </ul>
+
-
        </li>
+
-
    </div>
+
-
    <button type="button" class="btn btn-navbar" data-toggle="collapse" data-target=".nav-collapse">
+
<h1 class="cntr">Overview</h1>
-
      <span class="icon-bar"></span>
+
-
      <span class="icon-bar"></span>
+
-
      <span class="icon-bar"></span>
+
-
    </button>
+
-
  </div>
+
-
</div>
+
-
</div>
+
 +
<h2 class="section-heading" id="title_intro">Introduction</h2>
 +
<p class="lead">
-
<!-- END MENU -->
+
<!--Our team has been working on showing that biologically engineered organisms can detect and process signals quickly and efficiently.-->
-
<!-- ABSTRACT -->
+
Biological responses can be quick and precise! This is the message that our team wants to convey. With this in mind, our team brought forward a novel idea:
 +
<br />
-
<div class="whitebg">
+
<p style="border-style:solid; border-color:#120A2A;padding: 25px; background-color:#A5D2DA">
 +
Combining Protein Complementation techniques with biosensors and microfluidics allows fast spatiotemporal analysis of bacterial/yeast responses to stimuli.
 +
</p>
-
<!-- PROJECT -->
+
<br/>
-
<div class="container align-left">
 
-
<h1 class="cntr">Project</h1>
+
<!--
 +
Biological responses can be quick! This is the message that the 2014 EPFL iGEM team want to convey.
-
                    <h2 class="section-heading">How the BioPad works</h2>
+
<br /><br /><i>The BioPad project is intended to be a solid proof-of-concept of the combination of biosensors with protein complementation techniques to achieve fast spatiotemporal analysis of bacterial or yeast response to mechanical stimuli.</i>  
-
                    <p class="lead">
+
</p>
 +
-->
-
The process by which a signal is detected upon touch starts of from our self-designed PDMS microfluidic chip: the BioPad. The BioPad is made of hundreds of compartments that represent the "pixels" of our pad. Each chamber has dimensions of 30µm x 30µm x 3µm allowing the BioPad to have single layers of E.Coli. When the surface of the chip is touched, a deformation of the chip - and thus of the chambers - leads to cellular membrane shear stress and protein aggregation/misfolding in the periplasm. The aggregated/misfolded proteins are then sensed by the sensor histidine kinase CpxA that auto-phosphorylates and transfers its phosphate to its corresponding relay protein CpxR. Upon phosphorylation, CpxR homo-dimerizes. Our engineered bacteria contain CpxR proteins fused to split reversible fluorescent or luminescent protein fragments (IFP1.4 or firefly luciferase) via a 10 amino acid 2 x GGGS flexible linker. Therefore our engineered bacteria allow us to detect CpxR dimerization, synonymous periplasmic stress and touch. Then, a self built detector made of a raspberry pi, an inexpensive CMOS, and a couple of lenses, identifies and processes the position of the light/fluorescence emitted by the BioPad. This information about the position of the light relative to chip is then used to control the associated electronic device.
 
 +
 +
 +
<p class="lead">
 +
Our team explored this hypothesis by engineering two stress related pathways in <i>E. coli</i> and <i>S. cerevisiae</i> with in mind the development of a BioPad: a biological touchscreen consisting of a microfluidic chip, touch-responsive bacteria/yeast, and a signal detector. Learn more about <a href="#howitworks">how the BioPad works !</a> </p>
-
</p>
 
-
<!-- OLD INTRO
 
-
Our biological Touch Pad will allow to control electronic devices by emitting light at the specific location where the Pad has been touched. Light emission is possible by engineering reporter proteins such as the firefly Luciferase, the Renilla luciferase, the Infrared fluorescent proteins, and even the superfolder GFP.
 
-
We split the reporter proteins and fused them to an E.Coli endogenous protein involved in the regulation of extracytoplasmic stress. The protein of interest is CpxR, a component of the CpxA-CpxR two-component regulatory system.<br /><br /> -->
 
<!--
<!--
-
On top of developing the biological components allowing fast response to stimuli, we engineered a small, cheap and easy to use “microscope” mainly made of a small camera to detect the position of the emitted light, process the information and instruct the associated electronic device that the user is touching the BioPad a given position.
+
<p class="lead">
 +
The pathway engineered in <i>E. coli</i>, the Cpx Pathway, is a two-component (CpxA and CpxR) regulatory system responsive to envelope stress. It controls the expression of "survival" genes whose products act in the periplasm to maintain membrane integrity. CpxA intermembrane kinase activates and autophosphorylates when sensing misfolded protein (due to stress for example). CpxA phosphorylates CpxR which homodimerizes, acting as a transcription factor. A full description of the pathway is available <a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Envelope Stress Responsive Bacteria page !</a></p>
 +
 
-->
-->
 +
<p class="lead">
 +
The pathway engineered in <i>E. coli</i>, the Cpx Pathway, is a two-component regulatory system responsive to envelope stress. A full description of the pathway is available <a  target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria#cpx">here.</a>
 +
<br/>
 +
In <i>S. cerevisiae</i> we modified the HOG Pathway - a MAPKK pathway responsive to osmotic stress. For more information concerning the HOG Pathway click <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">here.</a>
 +
</p>
 +
<br/>
 +
<div  class="cntr">
 +
<a href="https://static.igem.org/mediawiki/2014/f/fd/CpxR-HOG.jpg" data-lightbox="cpxr" data-title="CpxR-HOG">
 +
<img src="https://static.igem.org/mediawiki/2014/f/fd/CpxR-HOG.jpg" alt="touch response" class="img-responsive img-border" /></a>
 +
</div>
-
  <h2 class="section-heading">The CpxA-R Pathway</h2>
+
<br /><br /><br/>
-
  <p class="lead">
+
 
 +
<div class="pull-left img-left">
 +
<a href="https://static.igem.org/mediawiki/2014/d/d8/EPFLmicrofluidics.JPG" data-lightbox="image-1" data-title="EPFL microfluidic chips"><img src="https://static.igem.org/mediawiki/2014/d/d8/EPFLmicrofluidics.JPG" width="250" class="img-border"></a>
 +
<figcaption class="cntr">EPFL microfluidic chips</figcaption>
 +
</div>
 +
<p class="lead">
 +
 
 +
Our project also includes an extensive <b>microfluidics section</b>. Our self designed chips helped us improve precision, safety and quantification methods used throughout the project. To learn more about the microfluidic components of our project check out <a  target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics">this link.</a></p>
 +
 
 +
<div class="pull-right img-right">
 +
<img src="http://www.raspberrypi.org/wp-content/uploads/2011/07/RaspiModelB.png" alt="first" width="200" class="img-border">
 +
<figcaption class="cntr">Raspberry Pi</figcaption>
 +
</div>
 +
<p class="lead">
 +
<br />
 +
Last but not least, we designed a <b>novel signal detector</b>! To make signal detection more practical we developed an automatised cheap tracking system made of a mini-computer (Raspberry Pi) and a mini-HD camera. More details concerning the BioPad detector can be found <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Hardware">here.</a>
 +
<br /></p>
 +
 
 +
<!--
 +
  <h2 id="CpxPathway">The Cpx Pathway in <i> E.Coli </i></h2>
 +
<br />
Line 103: Line 195:
 +
<!--
 +
<div class="cntr">
 +
<img src="https://static.igem.org/mediawiki/2014/6/62/Cpx_pathway_2_far_2.jpg" alt="Cpx_pathway_description_diagram" class="img-responsive">
 +
</div>
 +
-->
-
The natural function of the CpxA­-CpxR two component regulatory system in bacteria is to control the expression of ‘survival’ genes whose products act in the periplasm to maintain membrane integrity. This ensures continued bacterial growth even in environments with harmful extracytoplasmic stresses.
+
<!--
-
The CpxA-­CpxR two component regulatory system belongs to the class I histidine kinases and includes three main proteins:
+
<p class="lead">
 +
The natural function of the Cpx two component regulatory system in bacteria is to control the expression of ‘survival’ genes whose products act in the periplasm to maintain membrane integrity. This ensures continued bacterial growth even in environments with harmful extracytoplasmic stresses. The Cpx two component regulatory system belongs to the class I histidine kinases and includes three main proteins: CpxA, CpxR, and CpxP. For more detailed information about the Cpx pathway check out our <a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Envelope Stress Responsive Bacteria page !</a></p>
 +
<br />
 +
-->
-
<dl class="dl-horizontal">
 
-
  <dt>CpxA</dt>
 
-
  <dd>an integral inner­-membrane sensor kinase, which activates and auto­phosphorylates when sensing misfolded proteins in the E.Coli periplasm. CpxA transduces its signal through the membrane to activate the cytoplasmic CpxR response regulator by a phosphotransfer reaction.</dd>
 
-
  <dt>CpxR</dt>
 
-
  <dd>CpxA’s corresponding cytoplasmic response regulator belongs to the OmpR/PhoB family of winged­helix­turn­helix transcriptional response regulators and is phosphorylated by CpxA in the presence of extracytoplasmic stresses. Phosphorylation induces CpxR’s homo­dimerization, and activation as a transcription factor. Phosphorylated CpxR then binds to the promoters of genes coding for several protein folding and degradation factors that operate in the periplasm.</dd>
 
-
  <dt>CpxP</dt>
+
<!--
-
  <dd>an inhibitor of CpxA that we suspect to actively compete with misfolded proteins (CpxP is a chaperone).</dd>
+
<div class="cntr">
 +
<img src="https://static.igem.org/mediawiki/2014/4/41/Cpx_pathway_description_EPFL.jpg" width="70%" alt="Cpx_pathway_description">
 +
</div>
 +
-->
-
</dl>
+
<br />
-
</p>
+
<hr />
 +
<br />
-
  <h2 class="section-heading">Engineering: CpxR and split complementation techniques</h2>
 
-
  <p class="lead">
 
 +
<h2 class="section-heading" id="howitworks">How the BioPad works - <i>E. coli</i></h2>
-
<!-- ENGINEERING CPXR -->
+
<div class="pull-right img-right">
 +
<a href="https://static.igem.org/mediawiki/2014/b/b7/Puce_petit.jpg" data-lightbox="image-0" data-title="A potential BioPad">
 +
<img src="https://static.igem.org/mediawiki/2014/b/b7/Puce_petit.jpg" alt="Potential biopad" height="200" class="img-border" /></a>
 +
<figcaption class="cntr">A potential BioPad</figcaption>
 +
</div>
-
The main component that we wish to engineer is CpxR. It has been reported that the protein homo-dimerizes upon activation. We thus plan to use fused split proteins of fluorescent and bioluminescent nature to detect its activation. <br /><br />
+
<p class="lead">
-
table
+
Our BioPad is a self-designed PDMS microfluidic chip, made of thousands of compartments representing “pixels”. Each 300μm x 300μm x 50μm compartment contains a few layers of <i>E. coli</i>. When the surface of the chip is touched, a deformation on the chip - and thus of the compartments – leads to cellular membrane shear stress and protein aggregation/misfolding in the periplasm.<br/> <br/></p>
-
As a preliminary step, we used two fluorescent proteins sfGFP and IFP to characterisation CpxR. Split sfGFP (superfolder GFP) is an irreversible split system which will be used to prove the dimerization of CpxR. Split IFP on the other hand (Infrared Fluorescent Protein) is a reversible split system which will be used to understand the spatio-temporal dimerization of CpxR and thus allow us to better understand the On/Off mechanism of this system.<br /><br />
+
-
To achieve our final goal, we will engineer split bioluminescent proteins: Firefly and Renilla split Luciferases. These constructs will be the main component of our system. When fused to CpxR, we are expecting to witness emission upon touch.
 
 +
<p class="lead">
-
</p>
+
The histidine kinase sensor CpxA auto-phosphorylates and transfers its phosphate to its corresponding relay protein, CpxR, resulting in its dimerization. We engineered the pathway, by fusing split reporter protein fragments to the CpxR (IFP1.4). This allows the two fragments to remain inactive until physical interaction of CpxR (stimulated by envelope stress) leads to the proper folding of IFP1.4  and reconstitution of its fluorescent properties. As the reconstitution of the split fragments of IFP1.4 are reversible, the system can be shutdown upon stress removal (CpxA changes conformation to become a phosphatase and induces CpxR’s dissociation).<br/> <br/>  
-
  <h2 class="section-heading">Engineering: Microfluidic chip interface</h2>
+
The BioPad also includes a signal detector. This detector is composed of an inexpensive credit card-sized single-board computer called Raspberry Pi, a highly sensitive digital camera with appropriate light filters, and a light-emitting source. It identifies and processes the position of the light/fluorescence emitted by the BioPad. The information about the position of the light relative to chip is then used to control the associated electronic device. <br/>
-
  <p class="lead">
+
-
<!-- ENGINEERING MICROFLUIDICS -->
 
-
Our specially designed microfluidic chip, hereafter known as BioPad Chip, will allow easy and accurate induction of fluorescent or bioluminescent signals. The chip is made up of thousands of compartments – representing the pixels of our device ­- of the height of a bacteria. The BioTouch Chip thus allows the effective trapping and induction of stress onto our engineered bacteria. <br /><br />
 
 +
 +
<div class="cntr">
 +
<a href="https://static.igem.org/mediawiki/2014/1/15/Screen_Shot_2014-10-12_at_3.29.30_PM.png" data-lightbox="image-0" data-title="Fluorescence">
 +
<img src="https://static.igem.org/mediawiki/2014/1/15/Screen_Shot_2014-10-12_at_3.29.30_PM.png" alt="touch bacteria" height="200" class="img-border" /></a>
 +
</div>
 +
 +
<br />
 +
 +
<!--<hr />
 +
<br />
 +
 +
  <h2 id="thehogpathway">The HOG Pathway</h2>
 +
 +
 +
 +
<p class="lead">The HOG (High Osmolarity Glycerol) pathway is a MAPK (Mitogen activated protein kinase) pathway which yeast cells use to coordinate intracellular activities to optimise survival and proliferation in not only hyper-osmotic stress but also heat shock, nitrogen stress and oxidative stress. It is represented below.</p>
 +
 +
<br />
 +
<br />
 +
<img src="https://static.igem.org/mediawiki/2014/6/6d/Hog_pathway_copy.jpg" width="750" alt="HOG_pathway_description">
 +
<br />
 +
<p> The pathway includes five main proteins:</p>
 +
<ul style="padding-left:80px">
 +
<li><p class="lead">Sho1/Sln1 – Membrane proteins which are classed as STREs (STress Response Elements) which sense the stress and initiate the pathway</p></li>
 +
<li><p class="lead">Ste11 – The MAPKKK which phosphorylates PBS2</p></li>
 +
<li><p class="lead">PBS2 – The MAPKK which phosphorylates HOG1</p></li>
 +
<li><p class="lead">HOG1 – The MAPK which localizes to the nucleus upon phosphorylation and induces target gene transcription</p></li>
 +
</ul>
 +
<br>-->
 +
<br>
 +
 +
  <h2 id="howweengineered">Engineering the HOG pathway in <i>S. cerevisiae</i></h2>
 +
 +
 +
 +
<p class="lead">
 +
<br/>
 +
The <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">HOG pathway</a> controls the response to osmotic stress in yeast cells.
 +
Like bacteria, our modified <i>S. cerevisiae</i> cells can be loaded into the PDMS microfluidic chips we have designed. Thus cells are confined in small compartments made of a soft material. When the surface of the chip is touched, it leads to a deformation of the chip and its chambers. Since the HOG pathway is reactive to turgor pressure, the mechanical pressure applied activates it. Upon induction of the pathway, which is a classical MAP kinase pathway, PBS2 – a MAPKK – is phosphorylated and binds HOG1 – a MAPK – and in turn phosphorylates it.
</p>
</p>
-
<h2 class="section-heading">Engineering: The BioPad Detector</h2>
+
<div class="pull-left img-left" style="width:55%">
 +
<a href="https://static.igem.org/mediawiki/2014/7/7b/Schema_split.png" data-lightbox="img1" data-title="Figure of Hog1/Pbs2 split sfGFP and split rLuc">
 +
<img src="https://static.igem.org/mediawiki/2014/7/7b/Schema_split.png" alt="" class="img-border" style="width: 100%">
 +
</a>
 +
<figcaption class="cntr">Figure of Hog1/Pbs2 split sfGFP and split rLuc</figcaption>
 +
 
 +
</div>
 +
 
<p class="lead">
<p class="lead">
 +
These two kinases were fused to split fluorescent and luminescent proteins, via a 13-amino acid flexible linker, by homologous recombination. This allowed us to detect the phosphorylation of Hog1 by Pbs2 in response to osmotic pressure or touch. We used split sfGFP and split Renilla luciferase tags on the C-terminals of both proteins.
 +
</p>
 +
<p class="lead">
 +
The split sfGFP is irreversible and aimed to show the interaction between our two Pbs2 and Hog1 while we used the reversible split luciferase tags to assess the activation and inactivation of the pathway. In fact, when stress is removed, the signal should decline. The BioPad Detector is programmed to identify and process the light position and can transmit the information to a computer.
 +
</p>
-
<!-- ENGINEERING DETECTOR -->
 
-
The signals induced by the BioTouch Chip are then processed by our self designed detection system: the BioTouch Detector. The BioTouch Detector is mainly made of a cheap computer (Raspberry Pi), a highly sensitive digital camera with appropriate light filters, and a light emitting source. The BioTouch Detector locates signals from various sources (infrared fluorescence, green fluorescence and luminescence), processes them and sends back the relative positions of the signals with respect to the BioTouch Pad. Thanks to this position, we are able to extract information such as giving a computer operating system that the position represents the position of the mouse on a screen, that the well at the given position is a suitable antibiotic candidate, or that a gene of interest has been activated. We therefore effectively control a computer or any other electronic device through a living interface: the BioTouch Pad.
+
<hr>
 +
 +
<h2 class="section-heading" id="thebiopad">The BioPad Detector</h2>
 +
<p class="lead">
 +
 +
 +
<!-- ENGINEERING DETECTOR -->
 +
 +
The signals induced by the BioPad are then processed by our self designed detection system: the BioPad Detector. The BioPad Detector is mainly made of a cheap computer (Raspberry Pi), a highly sensitive digital camera with appropriate light filters, and a light emitting source. The BioPad Detector locates signals from various sources (infrared fluorescence, green fluorescence and luminescence), processes them and sends back the relative positions of the signals with respect to the BioPad. Thanks to this position, we are able to extract information such as giving a computer operating system that the position represents the position of the mouse on a screen, that the well at the given position is a suitable antibiotic candidate, or that a gene of interest has been activated. We therefore effectively control a computer or any other electronic device through a living interface: the BioPad.
</p>
</p>
 +
 +
<div class="cntr">
 +
<a href="https://static.igem.org/mediawiki/2014/b/bd/IMG_4154.JPG" data-lightbox="raspberry" data-title="the Raspberry Pi with a microfluidic chip on the lens"><img src="https://static.igem.org/mediawiki/2014/8/88/DeviceRasp.png" alt="Device" class="img-border img-responsive" /></a>
 +
<figcaption class="cntr">the Raspberry Pi with a microfluidic chip on the lens</figcaption>
 +
</div>
</div>
</div>
Line 162: Line 323:
<!-- END PROJECT -->
<!-- END PROJECT -->
 +
 +
</div>
 +
</div>
 +
 +
<div class="col col-md-3">
 +
<nav id="affix-nav" class="sidebar hidden-sm hidden-xs">
 +
    <ul class="nav sidenav box" data-spy="affix" data-offset-top="200" data-offset-bottom="600">
 +
        <li  class="active"><a href="#title_intro">Introduction</a></li>
 +
        <li><a href="#howitworks">How the BioPad works - <i>E. coli</i></a></li>
 +
        <li><a href="#howweengineered">Engineering the HOG pathway in <i>S. cerevisiae</i></a> </li>
 +
        <li><a href="#thebiopad">The BioPad Detector</a></li>
 +
 +
    </ul>
 +
</nav>
 +
</div>
 +
</div>
</div>
</div>

Latest revision as of 03:22, 18 October 2014

Overview

Introduction

Biological responses can be quick and precise! This is the message that our team wants to convey. With this in mind, our team brought forward a novel idea:

Combining Protein Complementation techniques with biosensors and microfluidics allows fast spatiotemporal analysis of bacterial/yeast responses to stimuli.


Our team explored this hypothesis by engineering two stress related pathways in E. coli and S. cerevisiae with in mind the development of a BioPad: a biological touchscreen consisting of a microfluidic chip, touch-responsive bacteria/yeast, and a signal detector. Learn more about how the BioPad works !

The pathway engineered in E. coli, the Cpx Pathway, is a two-component regulatory system responsive to envelope stress. A full description of the pathway is available here.
In S. cerevisiae we modified the HOG Pathway - a MAPKK pathway responsive to osmotic stress. For more information concerning the HOG Pathway click here.





EPFL microfluidic chips

Our project also includes an extensive microfluidics section. Our self designed chips helped us improve precision, safety and quantification methods used throughout the project. To learn more about the microfluidic components of our project check out this link.

first
Raspberry Pi


Last but not least, we designed a novel signal detector! To make signal detection more practical we developed an automatised cheap tracking system made of a mini-computer (Raspberry Pi) and a mini-HD camera. More details concerning the BioPad detector can be found here.




How the BioPad works - E. coli

Potential biopad
A potential BioPad

Our BioPad is a self-designed PDMS microfluidic chip, made of thousands of compartments representing “pixels”. Each 300μm x 300μm x 50μm compartment contains a few layers of E. coli. When the surface of the chip is touched, a deformation on the chip - and thus of the compartments – leads to cellular membrane shear stress and protein aggregation/misfolding in the periplasm.

The histidine kinase sensor CpxA auto-phosphorylates and transfers its phosphate to its corresponding relay protein, CpxR, resulting in its dimerization. We engineered the pathway, by fusing split reporter protein fragments to the CpxR (IFP1.4). This allows the two fragments to remain inactive until physical interaction of CpxR (stimulated by envelope stress) leads to the proper folding of IFP1.4 and reconstitution of its fluorescent properties. As the reconstitution of the split fragments of IFP1.4 are reversible, the system can be shutdown upon stress removal (CpxA changes conformation to become a phosphatase and induces CpxR’s dissociation).

The BioPad also includes a signal detector. This detector is composed of an inexpensive credit card-sized single-board computer called Raspberry Pi, a highly sensitive digital camera with appropriate light filters, and a light-emitting source. It identifies and processes the position of the light/fluorescence emitted by the BioPad. The information about the position of the light relative to chip is then used to control the associated electronic device.



Engineering the HOG pathway in S. cerevisiae


The HOG pathway controls the response to osmotic stress in yeast cells. Like bacteria, our modified S. cerevisiae cells can be loaded into the PDMS microfluidic chips we have designed. Thus cells are confined in small compartments made of a soft material. When the surface of the chip is touched, it leads to a deformation of the chip and its chambers. Since the HOG pathway is reactive to turgor pressure, the mechanical pressure applied activates it. Upon induction of the pathway, which is a classical MAP kinase pathway, PBS2 – a MAPKK – is phosphorylated and binds HOG1 – a MAPK – and in turn phosphorylates it.

Figure of Hog1/Pbs2 split sfGFP and split rLuc

These two kinases were fused to split fluorescent and luminescent proteins, via a 13-amino acid flexible linker, by homologous recombination. This allowed us to detect the phosphorylation of Hog1 by Pbs2 in response to osmotic pressure or touch. We used split sfGFP and split Renilla luciferase tags on the C-terminals of both proteins.

The split sfGFP is irreversible and aimed to show the interaction between our two Pbs2 and Hog1 while we used the reversible split luciferase tags to assess the activation and inactivation of the pathway. In fact, when stress is removed, the signal should decline. The BioPad Detector is programmed to identify and process the light position and can transmit the information to a computer.


The BioPad Detector

The signals induced by the BioPad are then processed by our self designed detection system: the BioPad Detector. The BioPad Detector is mainly made of a cheap computer (Raspberry Pi), a highly sensitive digital camera with appropriate light filters, and a light emitting source. The BioPad Detector locates signals from various sources (infrared fluorescence, green fluorescence and luminescence), processes them and sends back the relative positions of the signals with respect to the BioPad. Thanks to this position, we are able to extract information such as giving a computer operating system that the position represents the position of the mouse on a screen, that the well at the given position is a suitable antibiotic candidate, or that a gene of interest has been activated. We therefore effectively control a computer or any other electronic device through a living interface: the BioPad.

Device
the Raspberry Pi with a microfluidic chip on the lens

Sponsors