Team:EPF Lausanne/Microfluidics/Designing
From 2014.igem.org
(59 intermediate revisions not shown) | |||
Line 11: | Line 11: | ||
<!-- MENU --> | <!-- MENU --> | ||
- | <nav class="navbar navbar-default" role="navigation"> | + | <!-- MENU --> |
+ | <nav class="navbar navbar-default navbar_alt" role="navigation"> | ||
<div class="container-fluid"> | <div class="container-fluid"> | ||
<!-- Brand and toggle get grouped for better mobile display --> | <!-- Brand and toggle get grouped for better mobile display --> | ||
Line 30: | Line 31: | ||
<div class="nav-collapse"> | <div class="nav-collapse"> | ||
<ul class="nav"> | <ul class="nav"> | ||
- | + | <li><a href="https://2014.igem.org/Team:EPF_Lausanne">Home</a></li> | |
<li class="dropdown"> | <li class="dropdown"> | ||
- | <a href=" | + | <a href="#" class="dropdown-toggle active" data-toggle="dropdown">Project <span class="caret"></span></a> |
<ul class="dropdown-menu" role="menu"> | <ul class="dropdown-menu" role="menu"> | ||
<li><a href="https://2014.igem.org/Team:EPF_Lausanne/Overview">Overview</a></li> | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Overview">Overview</a></li> | ||
+ | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Stress Responsive Bacteria</a></li> | ||
+ | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">Osmo Responsive Yeast</a></li> | ||
+ | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics" class="active">Microfluidics</a></li> | ||
+ | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Hardware">Hardware</a></li> | ||
<li><a href="https://2014.igem.org/Team:EPF_Lausanne/Applications">Applications</a></li> | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Applications">Applications</a></li> | ||
- | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li> | + | |
- | + | ||
+ | <!-- <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li> | ||
+ | --> </ul> | ||
</li> | </li> | ||
- | + | ||
- | <a href=" | + | <li class="dropdown"> |
+ | <a href="#" class="dropdown-toggle" data-toggle="dropdown">Achievements <span class="caret"></span></a> | ||
<ul class="dropdown-menu" role="menu"> | <ul class="dropdown-menu" role="menu"> | ||
- | + | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Results">Results</a></li> | |
- | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/ | + | |
<li><a href="https://2014.igem.org/Team:EPF_Lausanne/Data">Data</a></li> | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Data">Data</a></li> | ||
- | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/ | + | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Judging">Judging</a></li> |
+ | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Parts">Parts</a></li> | ||
</ul> | </ul> | ||
+ | </li> | ||
+ | |||
+ | <li class="dropdown"> | ||
+ | <a href="#" class="dropdown-toggle" data-toggle="dropdown">Policy & Practice <span class="caret"></span></a> | ||
+ | <ul class="dropdown-menu" role="menu"> | ||
+ | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practice</a></li> | ||
+ | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Safety">Bio Safety</a></li> | ||
+ | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/PolicyPractice">Metafluidics</a></li> | ||
+ | |||
+ | <!-- <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li> | ||
+ | --> </ul> | ||
</li> | </li> | ||
<li class="dropdown"> | <li class="dropdown"> | ||
- | <a href=" | + | <a href="#" class="dropdown-toggle" data-toggle="dropdown">Notebook <span class="caret"></span></a> |
<ul class="dropdown-menu" role="menu"> | <ul class="dropdown-menu" role="menu"> | ||
- | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Team"> | + | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Bacteria">Bacteria</a></li> |
- | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/ | + | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Yeast">Yeast</a></li> |
+ | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Microfluidics">Microfluidics</a></li> | ||
+ | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Protocol">Protocols</a></li> | ||
</ul> | </ul> | ||
</li> | </li> | ||
<li class="dropdown"> | <li class="dropdown"> | ||
- | <a href=" | + | <a href="#" class="dropdown-toggle" data-toggle="dropdown">Team <span class="caret"></span></a> |
<ul class="dropdown-menu" role="menu"> | <ul class="dropdown-menu" role="menu"> | ||
- | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/ | + | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook">Timeline</a></li> |
- | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/ | + | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Team">Meet us!</a></li> |
+ | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Attributions">Attributions</a></li> | ||
+ | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Acknowledgments">Acknowledgments</a></li> | ||
</ul> | </ul> | ||
</li> | </li> | ||
Line 75: | Line 98: | ||
+ | <div class="container"> | ||
+ | <div class="box" id="boxbread"> | ||
- | < | + | <ol class="breadcrumb breadcrumb-arrow"> |
+ | <li><a href="https://2014.igem.org/Team:EPF_Lausanne"><i class="glyphicon glyphicon-home"></i> Home</a></li> | ||
+ | <li class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown"><i class="glyphicon glyphicon-cog"></i> Project <b class="caret"></b></a> | ||
+ | <ul class="dropdown-menu"> | ||
+ | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Overview">Overview</a></li> | ||
+ | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Stress Responsive Bacteria</a></li> | ||
+ | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">Osmo Responsive Yeast</a></li> | ||
+ | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Hardware">Hardware</a></li> | ||
+ | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Applications">Applications</a></li> | ||
+ | </ul> | ||
+ | </li> | ||
+ | <li class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown"><i class="glyphicon glyphicon-search"></i> Microfluidics <b class="caret"></b></a> | ||
+ | <ul class="dropdown-menu"> | ||
+ | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics">Overview</a></li> | ||
+ | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Making/PartI">Making a chip: Part I</a></li> | ||
+ | <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Making/PartII">Making a chip: Part II</a></li> | ||
+ | </ul> | ||
+ | </li> | ||
+ | <li class="active"><span>Designing a chip</span></li> | ||
+ | </ol> | ||
+ | </div> | ||
+ | <div class="row"> | ||
- | <div class=" | + | <div class="col col-md-9"> |
- | + | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
+ | <div class="whitebg box"> | ||
+ | |||
+ | |||
+ | <a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics" class="btn btn-primary pull-left" role="button"><- Overview</a> | ||
+ | |||
+ | <a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Making/PartI" class="btn btn-primary pull-right" role="button">Next step: Making a chip part I -></a> | ||
+ | |||
+ | <h1 class="center">Designing a chip</h1> | ||
<br/><br/> | <br/><br/> | ||
- | + | <h2>The thought process of our designs</h2> | |
- | <h2>The | + | |
<br/> | <br/> | ||
+ | <a href="https://static.igem.org/mediawiki/2014/7/71/Chip_diagram.png" data-lightbox="img1" data-title="The evolution of our designs"><img src="https://static.igem.org/mediawiki/2014/7/71/Chip_diagram.png" width="60%" class="pull-right img-right img-border"></a> | ||
- | <p class="lead">When we started microfluidic experiments, the experiments required flowing cells in chambers and exposing them to different solutions and so we used the chip that was already available to us : the MITOMI chip.</p> | + | <h3 id="smash">The SmashColi</h3> |
+ | <br/> | ||
+ | <p class="lead">When we started microfluidic experiments, the experiments required flowing cells in chambers and exposing them to different solutions and so we used the chip that was already available to us : the <a target="_blank" href="http://link.springer.com/protocol/10.1007%2F978-1-61779-292-2_6">MITOMI chip</a>.</p> | ||
<p class="lead">However for our project, where mechanical pressure will induce our touch sensitive bacteria, we thought of designing a new chip with bigger chambers (to increase the emission of the signal per chamber) and to add ‘huge buttons’ above the chambers to enable us to ‘squish the cells’, thus the SmashColi was designed.</p> | <p class="lead">However for our project, where mechanical pressure will induce our touch sensitive bacteria, we thought of designing a new chip with bigger chambers (to increase the emission of the signal per chamber) and to add ‘huge buttons’ above the chambers to enable us to ‘squish the cells’, thus the SmashColi was designed.</p> | ||
Line 115: | Line 157: | ||
<p>Control layer design & Flow layer design.</p> | <p>Control layer design & Flow layer design.</p> | ||
- | <a href="https://static.igem.org/mediawiki/2014/0/0b/Microfdes5.png" data-lightbox="img1" data-title="Flow & control layers of SmashColi overlapped"><img src="https://static.igem.org/mediawiki/2014/0/0b/Microfdes5.png" | + | <a href="https://static.igem.org/mediawiki/2014/0/0b/Microfdes5.png" data-lightbox="img1" data-title="Flow & control layers of SmashColi overlapped"><img src="https://static.igem.org/mediawiki/2014/0/0b/Microfdes5.png" class="img-responsive"></a> |
<p>Both layers overlapped.</p> | <p>Both layers overlapped.</p> | ||
+ | <a href="https://static.igem.org/mediawiki/2014/0/07/BiopadFull.png" data-lightbox="img1" data-title="BioPad, final device design"><img src="https://static.igem.org/mediawiki/2014/0/07/BiopadFull.png" width="50%" class="pull-right img-right"></a> | ||
+ | <br/> | ||
+ | <h3 id="biopad_">Final device: the BioPad</h3> | ||
+ | <br/> | ||
- | |||
- | |||
<p class="lead">For our final device, the idea was to have a large sized microfluidic chip where the cells can grow in chambers, each chambers will act as a ‘pixel’.</p> | <p class="lead">For our final device, the idea was to have a large sized microfluidic chip where the cells can grow in chambers, each chambers will act as a ‘pixel’.</p> | ||
<p class="lead">The design is pretty simple, consisting of only a flow layer.</p> | <p class="lead">The design is pretty simple, consisting of only a flow layer.</p> | ||
- | |||
- | < | + | <!-- ADDED TEXT TO MODIFY STRUCTURE --> |
+ | <div class="clearfix"></div> | ||
+ | <h3 id="filter">The FilterColi</h3> | ||
+ | <br/> | ||
+ | <p class="lead">One of the experiments that we did at the end of the summer was to expose the cells to different solutions by flowing it in and diffuse it in the chambers. However we saw that it wasn’t very effective and so we designed a new chip were the solution is flowed through the cell and so the cells are directly in contact with the solution. </p> | ||
<p class="lead">The FilterColi was the answer to our problem. By adding filters in the chambers and another flow channel below the chambers, we would be able to flow solution through the cells. </p> | <p class="lead">The FilterColi was the answer to our problem. By adding filters in the chambers and another flow channel below the chambers, we would be able to flow solution through the cells. </p> | ||
+ | <a href="https://static.igem.org/mediawiki/2014/8/89/FilterControl.png" data-lightbox="img1" data-title="Control layer of FilterColi"><img src="https://static.igem.org/mediawiki/2014/d/de/Microfdes1.png" width="46%"></a> | ||
+ | <a href="https://static.igem.org/mediawiki/2014/4/48/FilterFlow.png" data-lightbox="img1" data-title="Flow layer of FilterColi"><img src="https://static.igem.org/mediawiki/2014/f/f1/Microfdes2.png" width="48%"></a> | ||
+ | <p>Control layer design & Flow layer design.</p> | ||
+ | <a href="https://static.igem.org/mediawiki/2014/c/c8/Filterfull.png" data-lightbox="img1" data-title="Flow & control layers of FilterColi overlapped"><img src="https://static.igem.org/mediawiki/2014/c/c8/Filterfull.png" class="img-responsive"></a> | ||
+ | <p>Both layers overlapped.</p> | ||
+ | |||
+ | <br/><br/><br/> | ||
+ | |||
+ | <h3 id="clean">The CleanColi</h3> | ||
+ | <br/> | ||
+ | <p class="lead">As we did the safety issues for Microfluidics, we brainstormed to make an “on chip waste treatment”. The idea was to implement mechanisms in the chip, which will treat the cells that were to exit the array of chambers.<br/> | ||
+ | <div class="cntr"> | ||
+ | <a href="https://static.igem.org/mediawiki/2014/f/ff/Clean.png" data-lightbox="img1" data-title="CleanColi device"><img src="https://static.igem.org/mediawiki/2014/f/ff/Clean.png" width="80%"></a><br/><br/> | ||
</div> | </div> | ||
+ | The process we created is the following : <br/><br/><br/><br/> | ||
+ | |||
+ | <div class="cntr"> | ||
+ | <a href="https://static.igem.org/mediawiki/2014/0/05/Serpentine.png" data-lightbox="img1" data-title="Serpentine to mix the Bleach or lysis in the flow"><img src="https://static.igem.org/mediawiki/2014/0/05/Serpentine.png" width="48%"></a><br/> | ||
</div> | </div> | ||
+ | Step 1. The cells leave the array of chambers and are flowed in a serpentine circuit with lysis buffer to mix the cells and the lysis.<br/> | ||
+ | |||
+ | Step 2. The waste is then flowed in another serpentine circuit with bleach.<br/><br/><br/><br/> | ||
+ | |||
+ | <div class="cntr"> | ||
+ | <a href="https://static.igem.org/mediawiki/2014/3/35/Filter.png" data-lightbox="img1" data-title="A filter chamber to block all the cells and debris"><img src="https://static.igem.org/mediawiki/2014/3/35/Filter.png" width="48%"></a><br/> | ||
</div> | </div> | ||
+ | Step 3. The waste is retained in a last big chamber where they are confronted to smaller and smaller filters to keep the debris in the chamber and only liquid will be flowed out of the chip.<br/><br/><br/><br/> | ||
+ | |||
+ | <div class="cntr"> | ||
+ | <a href="https://static.igem.org/mediawiki/2014/9/93/Heater.png" data-lightbox="img1" data-title="A microheater to denature the cells or proteins that survived the rest of the process"><img src="https://static.igem.org/mediawiki/2014/9/93/Heater.png" width="48%"></a><br/> | ||
+ | </div> | ||
+ | Step 4. The cells enter a big chamber located above a microheater inducing a local temperature of 95°C.<br/> | ||
+ | </p> | ||
+ | |||
+ | |||
+ | <a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics" class="btn btn-primary pull-left" role="button"><- Overview</a> | ||
+ | <a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Making/PartI" class="btn btn-primary pull-right" role="button">Next step: Making a chip part I -></a> | ||
+ | |||
+ | <div class="clearfix"></div> | ||
+ | |||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div class="col col-md-3"> | ||
+ | <nav id="affix-nav" class="sidebar hidden-sm hidden-xs"> | ||
+ | <ul class="nav sidenav box" data-spy="affix" data-offset-top="200" data-offset-bottom="600"> | ||
+ | <!--<li class="active"><a href="#syntheticbiology">Microfluidics & synthetic biology</a></li>--> | ||
+ | <li><a href="#smash">SmashColi</a></li> | ||
+ | <li><a href="#biopad_">BioPad</a></li> | ||
+ | <li><a href="#filter">FilterColi</a></li> | ||
+ | <li><a href="#clean">CleanColi</a></li> | ||
+ | |||
+ | </ul> | ||
+ | </nav> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
<!-- END ABSTRACT --> | <!-- END ABSTRACT --> | ||
</html> | </html> | ||
{{CSS/EPFL_bottom}} | {{CSS/EPFL_bottom}} |
Latest revision as of 01:35, 18 October 2014
Designing a chip
The thought process of our designs
The SmashColi
When we started microfluidic experiments, the experiments required flowing cells in chambers and exposing them to different solutions and so we used the chip that was already available to us : the MITOMI chip.
However for our project, where mechanical pressure will induce our touch sensitive bacteria, we thought of designing a new chip with bigger chambers (to increase the emission of the signal per chamber) and to add ‘huge buttons’ above the chambers to enable us to ‘squish the cells’, thus the SmashColi was designed.
This chip is able to separate the array of chambers in 4, permitting us to flow in different cells and different solutions on one chip. Additionally, an input was designated for every 7 columns of buttons allowing us to put 4 different pressures on each row of cells. One row out of two was deprived of buttons to be used as a negative control. With all of this in mind, one chip is able to have 4 different cells and for each type of cells 4 pressures can be applied on them giving a total of 16 different experiments on just one chip!
You may wonder why we didn’t just have chambers and press on the chip with a pen or our finger. Well the possibility of the SmashColi is that by applying the pressure through a machine, it is possible to quantify how the cells react towards a specific pressure. Once the cells were ready we would be able to quantify the intensity of the signal based on the pressure applied to them.
Control layer design & Flow layer design.
Both layers overlapped.
Final device: the BioPad
For our final device, the idea was to have a large sized microfluidic chip where the cells can grow in chambers, each chambers will act as a ‘pixel’.
The design is pretty simple, consisting of only a flow layer.
The FilterColi
One of the experiments that we did at the end of the summer was to expose the cells to different solutions by flowing it in and diffuse it in the chambers. However we saw that it wasn’t very effective and so we designed a new chip were the solution is flowed through the cell and so the cells are directly in contact with the solution.
The FilterColi was the answer to our problem. By adding filters in the chambers and another flow channel below the chambers, we would be able to flow solution through the cells.
Control layer design & Flow layer design.
Both layers overlapped.
The CleanColi
As we did the safety issues for Microfluidics, we brainstormed to make an “on chip waste treatment”. The idea was to implement mechanisms in the chip, which will treat the cells that were to exit the array of chambers.
Step 1. The cells leave the array of chambers and are flowed in a serpentine circuit with lysis buffer to mix the cells and the lysis.
Step 2. The waste is then flowed in another serpentine circuit with bleach.
Step 3. The waste is retained in a last big chamber where they are confronted to smaller and smaller filters to keep the debris in the chamber and only liquid will be flowed out of the chip.
Step 4. The cells enter a big chamber located above a microheater inducing a local temperature of 95°C.
<- Overview Next step: Making a chip part I ->