Team:Bielefeld-CeBiTec/Results/Biosafety/Outlook

From 2014.igem.org

(Difference between revisions)
(part2)
 
(11 intermediate revisions not shown)
Line 16: Line 16:
</style>
</style>
-
<h1> Biosafety </h1>
+
<h1>Biosafety - Antibiotic-free Selection</h1>
<!-- Button begin -->
<!-- Button begin -->
-
<div id="main_menue" style="margin-left:20px; height:80px">
+
<div id="main_menue" style="margin-left:65px; height:80px">
<a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/Biosafety"style="color:#000000">
<a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/Biosafety"style="color:#000000">
   <div class="main_menueButton">
   <div class="main_menueButton">
Line 38: Line 38:
</a>
</a>
-
                        <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/Biosafety/MolecularCloning"style="color:#000000">
 
-
  <div class="main_menueButton" style="width:90px">
 
-
              <p class="buttoncenter"><font color="#FFFFFF">Cloning</font></p>
 
-
  </div>
 
-
</a>
 
                         <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/Biosafety/Long-termStability"style="color:#000000">
                         <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/Biosafety/Long-termStability"style="color:#000000">
Line 72: Line 67:
     <h6>Summary</h6>
     <h6>Summary</h6>
       <p>
       <p>
-
So in conclusion it could be demonstrated, that the antibiotic-free selection system by via the D-alanine auxotrophic strain DH5&alpha; <i>&Delta;alr</i> <i>&Delta;dadX</i> is not only possible, but even <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/Biosafety/TransformationEfficiency">more efficent</a> according to the transformation efficiency with the plasmid <a href="http://parts.igem.org/Part:BBa_K1465401">BBa_K1465401</a>. Addition the novel sysmtem requires a <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/Biosfety/TransformationProcess">shorter incubation</a> in SOC-media after the successful tranformation to reach comparable transformation effiency than in Chloramphenicol. (On top it could be demonstrated that this system can be used for molecular cloning of normal plasmid size like <a href="http://parts.igem.org/Part:BBa_K1465401">BBa_I13522</a> with a total size of 4100 bp). Additionaly the selection via the complementation of the alanine racemase is suitable also for  <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/Biosafety/Long-termStability">longer time</a> and as constant as the plasmidstability with the antibiotic Chloramphenicol.<br>
+
It could be demonstrated, that the antibiotic-free selection system by the D-alanine auxotrophic strain DH5&alpha; <i>&Delta;alr</i> <i>&Delta;dadX</i> is not only possible, but even <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/Biosafety/TransformationEfficiency">more efficent</a> according to the transformation efficiency with the plasmid <a href="http://parts.igem.org/Part:BBa_K1465401">BBa_K1465401</a> then classical approaches. In addition the novel system enables a <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/Biosfety/TransformationProcess">shorter incubation</a> in SOC media after the transformation to reach comparable transformation efficencies to chloramphenicol. It was demonstrated that this system can be used for molecular cloning of plasmids with normal size like <a href="http://parts.igem.org/Part:BBa_K1465401">BBa_I13522</a> with a total size of 4100 bp. Furthermore the selection via the complementation of the alanine racemase is suitable for  <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/Biosafety/Long-termStability">long-term</a> cultivations and guarantees a plasmid stability comparable to the antibiotic system with chloramphenicol.
-
Nevertheless there are resting challenges for the furture to optimize the system of an antibiotica-free selection. One problem is that there revertants, resulting in an double high ratio of 2,8 % in comparision to the selection with antibiotics (1,5 %). This seems to be not problematic due to the higher transofrmation effiency but upon difficult transformation but this might be problematic when none or very few positive colonies are formed. In this case the ratio of false-positive might be higher so that the addition of L-methionine or the deletion of <i>metC</i> is neccessary to obtain and effective selection (<a href="#Kang2011">Kang <i>et al.</i>, 2011</a>).<br>
+
<br>
-
Another aspect to mentioned is, that the plasmid <a href="http://parts.igem.org/Part:BBa_K1465401">BBa_K1465401</a> used for the charaterization of the antibiotic-free selection still contains the coding sequence for the Chloramphenicol-resistance, so that up to now the system is not completly detached from an antibiotic-selection, but the primer for the deletion of the Chloramphenicol-resistance of the pSB1C3 were already designed and can be found <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Notebook/Primer#pSB1C3_Cm_del_fwd" target="_blank">here</a>). And since the selection via complementation of the alanine racemase has turned out to be functional there is no hurdle to establish the first overall antibiotic-free selection system in <i>E. coli</i>!
+
-
And on top this sysem might be not only limited to <i>E. coli</i> since a D-alanine auxotrophy could be demonstrated also for other bacteria like <br>
+
-
 
+
-
 
+
-
<i>Listeria monocytes</i> (Quelle: R. Thompson, H. Bouwer, D. Portnoy, F. Frankel, Pathogenicity and and immunogenicity of a Listeria monocytogenes strain that requires D-alanine for growth., Infect Immun, 1998, 66, S. 3552 - 3561.)  <i>Corynebacterium  glutamicum</i> (A. Tauch, S. Götker, A. Pühler, J. Kalinowski, G. Thierbach, The alanine racemase gene alr is an alternative to antibiotic resistance genes in cloning systems for industrial Corynebacterium glutamicum strains, Journal of Biotechnology, 2002, Vol. 99, S. 79 - 91.) or <i>Bacillus subtilis</i> (Quelle: E. Ferrari, D. Henner und M. Yang, Isolation of an alanine racemase gene from Bacillus subtilis and its use for plasmid maintenance in B.subtilis., Bio/Technology, 1985, 3, S. 1003 - 1007.).
+
 +
<center>
 +
<div class="element" style="width:600px">
 +
    <a href="https://static.igem.org/mediawiki/2014/f/fa/Bielefeld-CeBiTec_2014-10-17_Comparision-AB-alr.png" target="_blank"><img src="https://static.igem.org/mediawiki/2014/f/fa/Bielefeld-CeBiTec_2014-10-17_Comparision-AB-alr.png" width="600px" align="center"></a><br>
 +
<font size="2" style=""><b>Figure 12:</b> Comparision of the transformation efficiency for the classical selection with Chloramphenicol (left) or antibiotic-free on normal LB-media (right).</font>
 +
</div>
 +
</center>
<br>
<br>
-
 
+
Nevertheless there are remaining challenges for the future to optimize the system of an antibiotic-free selection system. A problematic issue are revertants, which occur in a two times higher ratio of 2.8 % in comparision to the selection with antibiotics (1.5 %). This seems not to be problematic due to the higher transformation efficiency. This might be problematic when none or very few positive colonies are formed, for example in case of difficult transformations with large plasmids. In this case the ratio of false-positive transformants might be higher, which might require the addition of L-methionine or the deletion of <i>metC</i> to obtain an effective selection (<a href="#Kang2011">Kang <i>et al.</i>, 2011</a>).
-
as example, so that it might be feasible with any bacteria where the cross-linkage of the peptidoglycane layer is realized with D-alanine...Abschluss sat über das reduzierte Restriskio<br>
+
<br>
-
 
+
Another aspect which has to be mentioned is that the plasmid <a href="http://parts.igem.org/Part:BBa_K1465401">BBa_K1465401</a> which is used for the charaterization of the antibiotic-free selection, still contains the coding sequence for the chloramphenicol-resistance. Until now the system is not completely detached from an antibiotic-selection, but the deletion primers for the chloramphenicol resistance gene of the pSB1C3 were already designed and can be found <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Notebook/Primer#pSB1C3_Cm_del_fwd" target="_blank">here</a>.
-
 
+
Since the selection via complementation of the alanine racemase has been proven to be functional, there is no longer a hurdle to establish the first overall antibiotic-free selection system in <i>E.&nbsp;coli</i>!
 +
<br>
 +
Above all mentioned results this sysem might be not only limited to <i>E.&nbsp;coli</i>. A D-alanine auxotrophy could be already demonstrated for other bacteria like <i>Listeria&nbsp;monocytes</i> (<a href="#Thompson1998">Thompson <i>et al.</i>, 1998</a>),  <i>Corynebacterium&nbsp;glutamicum</i> (<a href="#Tauch2002">Tauch <i>et al.</i>, 2002</a>) or <i>Bacillus&nbsp;subtilis</i> (<a href="#Ferrari1985">Ferrari <i>et al.</i>, 1985</a>). A selection system with complementation of the alanin racemase might be feasible for all bacteria where D-alanine is responsible for the cross-linkage of the peptidoglycane layer.
       </p>
       </p>
   </div>
   </div>
Line 97: Line 95:
       <p>
       <p>
<ul>
<ul>
 +
 +
 +
<li id="Ferrari1985">
 +
<div class="element" style="margin:10px 10px 10px 10px; padding:10px 10px 10px 10px">
 +
  <div id="text">
 +
      E. Ferrari, D. Henner und M. Yang (1985) Isolation of an alanine racemase gene from Bacillus subtilis and its use for plasmid maintenance in B.subtilis. <a href="http://www.nature.com/nbt/journal/v3/n11/pdf/nbt1185-1003.pdf" target="_blank"><i>Nature Biotechnology</i></a>, vol. 3, pp. 1003 - 1007.
 +
  </div>
 +
</div>
 +
</li>
<li id="Kang2011">
<li id="Kang2011">
Line 102: Line 109:
   <div id="text">
   <div id="text">
       Kang L, Shaw AC, Xu D, Xia W, Zhang J, Deng J, Wöldike HF, Liu Y, Su J. (2011) Upregulation of MetC is essential for D-alanine-independent growth of an alr/dadX-deficient Escherichia coli strain. <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3067588/pdf/1027-10.pdf" target="_blank"><i>Journal of bacteriology</i></a>, vol. 193, pp. 1098 - 1106.
       Kang L, Shaw AC, Xu D, Xia W, Zhang J, Deng J, Wöldike HF, Liu Y, Su J. (2011) Upregulation of MetC is essential for D-alanine-independent growth of an alr/dadX-deficient Escherichia coli strain. <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3067588/pdf/1027-10.pdf" target="_blank"><i>Journal of bacteriology</i></a>, vol. 193, pp. 1098 - 1106.
 +
  </div>
 +
</div>
 +
</li>
 +
 +
<li id="Tauch2002">
 +
<div class="element" style="margin:10px 10px 10px 10px; padding:10px 10px 10px 10px">
 +
  <div id="text">
 +
      A. Tauch, S. Götker, A. Pühler, J. Kalinowski, G. Thierbach (2002) The alanine racemase gene alr is an alternative to antibiotic resistance genes in cloning systems for industrial Corynebacterium glutamicum strains. <a href="http://ac.els-cdn.com/S0168165602001591/1-s2.0-S0168165602001591-main.pdf?_tid=770bd5ec-5570-11e4-9bc2-00000aacb361&acdnat=1413490405_6fec2c2bbb598b23bfd24b64748541b7" target="_blank"><i> Journal of Biotechnology</i></a>, vol. 99, pp. 79 - 91.
 +
  </div>
 +
</div>
 +
</li>
 +
 +
<li id="Thompson1998">
 +
<div class="element" style="margin:10px 10px 10px 10px; padding:10px 10px 10px 10px">
 +
  <div id="text">
 +
      R. Thompson, H. Bouwer, D. Portnoy, F. Frankel (1998) Pathogenicity and and immunogenicity of a Listeria monocytogenes strain that requires D-alanine for growth. <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC108386/pdf/ii003552.pdf" target="_blank"><i> Infection and Immunity</i></a>, vol. 66, pp. 3552 - 3561.
   </div>
   </div>
</div>
</div>

Latest revision as of 01:12, 18 October 2014


Biosafety - Antibiotic-free Selection

Summary

It could be demonstrated, that the antibiotic-free selection system by the D-alanine auxotrophic strain DH5α Δalr ΔdadX is not only possible, but even more efficent according to the transformation efficiency with the plasmid BBa_K1465401 then classical approaches. In addition the novel system enables a shorter incubation in SOC media after the transformation to reach comparable transformation efficencies to chloramphenicol. It was demonstrated that this system can be used for molecular cloning of plasmids with normal size like BBa_I13522 with a total size of 4100 bp. Furthermore the selection via the complementation of the alanine racemase is suitable for long-term cultivations and guarantees a plasmid stability comparable to the antibiotic system with chloramphenicol.


Figure 12: Comparision of the transformation efficiency for the classical selection with Chloramphenicol (left) or antibiotic-free on normal LB-media (right).

Nevertheless there are remaining challenges for the future to optimize the system of an antibiotic-free selection system. A problematic issue are revertants, which occur in a two times higher ratio of 2.8 % in comparision to the selection with antibiotics (1.5 %). This seems not to be problematic due to the higher transformation efficiency. This might be problematic when none or very few positive colonies are formed, for example in case of difficult transformations with large plasmids. In this case the ratio of false-positive transformants might be higher, which might require the addition of L-methionine or the deletion of metC to obtain an effective selection (Kang et al., 2011).
Another aspect which has to be mentioned is that the plasmid BBa_K1465401 which is used for the charaterization of the antibiotic-free selection, still contains the coding sequence for the chloramphenicol-resistance. Until now the system is not completely detached from an antibiotic-selection, but the deletion primers for the chloramphenicol resistance gene of the pSB1C3 were already designed and can be found here. Since the selection via complementation of the alanine racemase has been proven to be functional, there is no longer a hurdle to establish the first overall antibiotic-free selection system in E. coli!
Above all mentioned results this sysem might be not only limited to E. coli. A D-alanine auxotrophy could be already demonstrated for other bacteria like Listeria monocytes (Thompson et al., 1998), Corynebacterium glutamicum (Tauch et al., 2002) or Bacillus subtilis (Ferrari et al., 1985). A selection system with complementation of the alanin racemase might be feasible for all bacteria where D-alanine is responsible for the cross-linkage of the peptidoglycane layer.

References

  • E. Ferrari, D. Henner und M. Yang (1985) Isolation of an alanine racemase gene from Bacillus subtilis and its use for plasmid maintenance in B.subtilis. Nature Biotechnology, vol. 3, pp. 1003 - 1007.
  • Kang L, Shaw AC, Xu D, Xia W, Zhang J, Deng J, Wöldike HF, Liu Y, Su J. (2011) Upregulation of MetC is essential for D-alanine-independent growth of an alr/dadX-deficient Escherichia coli strain. Journal of bacteriology, vol. 193, pp. 1098 - 1106.
  • A. Tauch, S. Götker, A. Pühler, J. Kalinowski, G. Thierbach (2002) The alanine racemase gene alr is an alternative to antibiotic resistance genes in cloning systems for industrial Corynebacterium glutamicum strains. Journal of Biotechnology, vol. 99, pp. 79 - 91.
  • R. Thompson, H. Bouwer, D. Portnoy, F. Frankel (1998) Pathogenicity and and immunogenicity of a Listeria monocytogenes strain that requires D-alanine for growth. Infection and Immunity, vol. 66, pp. 3552 - 3561.