Team:ETH Zurich/modeling/int

From 2014.igem.org

(Difference between revisions)
m (Assumptions)
m (State of the Art)
Line 121: Line 121:
|}
|}
-
Replacing every occurence of Bxb1 by ΦC31 gives the set of parameters for ΦC31. The same status can be applied to those parameters.  
+
Substituting ΦC31 for Bxb1 gives the set of parameters for ΦC31. The same status can be applied to those parameters.  
<br/>
<br/>
<br/>
<br/>
-
Even if degradation rates were not determined specifically for the serine integrases and their dimerized form, degradation rates of proteins in ''E. coli'' are available. We assume that the degradation rates of dimerized forms are two times higher than the degradation rates of monomers. Typically, d<sub>DBxb1</sub> = 2*d<sub>Bxb1</sub> To characterize integrase behavior, we focus on finding the parameters for dimerization and DNA-binding.
+
Even if degradation rates were not determined specifically for the serine integrases and their dimerized form, degradation rates of proteins in ''E. coli'' are available. We assume that the degradation rates of dimerized forms are two times higher than the degradation rates of monomers. Typically, d<sub>DBxb1</sub> = 2*d<sub>Bxb1</sub>. To characterize integrases behavior, we focused on estimating the parameters for dimerization and DNA-binding.
<html></article></html>
<html></article></html>

Revision as of 01:03, 18 October 2014

iGEM ETH Zurich 2014