Team:EPF Lausanne/Microfluidics

From 2014.igem.org

(Difference between revisions)
 
(64 intermediate revisions not shown)
Line 6: Line 6:
<!--  here ends the section that changes the default wiki template to a white full width background -->
<!--  here ends the section that changes the default wiki template to a white full width background -->
-
 
<!-- MENU -->
<!-- MENU -->
-
 
<nav class="navbar navbar-default navbar_alt" role="navigation">
<nav class="navbar navbar-default navbar_alt" role="navigation">
   <div class="container-fluid">
   <div class="container-fluid">
Line 33: Line 31:
         <li><a href="https://2014.igem.org/Team:EPF_Lausanne">Home</a></li>
         <li><a href="https://2014.igem.org/Team:EPF_Lausanne">Home</a></li>
         <li class="dropdown">
         <li class="dropdown">
-
           <a href="https://2014.igem.org/Team:EPF_Lausanne" class="dropdown-toggle" data-toggle="dropdown">Project <span class="caret"></span></a>
+
           <a href="#" class="dropdown-toggle active" data-toggle="dropdown">Project <span class="caret"></span></a>
           <ul class="dropdown-menu" role="menu">
           <ul class="dropdown-menu" role="menu">
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Overview">Overview</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Overview">Overview</a></li>
-
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Stress Responsive</a></li>
+
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Stress Responsive Bacteria</a></li>
-
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">Osmo Responsive</a></li>
+
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">Osmo Responsive Yeast</a></li>
-
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics">Microfluidics</a></li>
+
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics" class="active">Microfluidics</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Hardware">Hardware</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Hardware">Hardware</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Applications">Applications</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Applications">Applications</a></li>
Line 49: Line 47:
       <li class="dropdown">
       <li class="dropdown">
-
           <a href="#" class="dropdown-toggle active" data-toggle="dropdown">Achievements <span class="caret"></span></a>
+
           <a href="#" class="dropdown-toggle" data-toggle="dropdown">Achievements <span class="caret"></span></a>
           <ul class="dropdown-menu" role="menu">
           <ul class="dropdown-menu" role="menu">
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Results">Results</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Results">Results</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Data">Data</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Data">Data</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Judging">Judging</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Judging">Judging</a></li>
-
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Parts" class="active">Parts</a></li>
+
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Parts">Parts</a></li>
           </ul>
           </ul>
         </li>
         </li>
Line 63: Line 61:
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practice</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practice</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Safety">Bio Safety</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Safety">Bio Safety</a></li>
-
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/PolicyPractice">Policy &amp; Practice</a></li>
+
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/PolicyPractice">Metafluidics</a></li>
<!--            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
<!--            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
Line 73: Line 71:
           <ul class="dropdown-menu" role="menu">
           <ul class="dropdown-menu" role="menu">
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Bacteria">Bacteria</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Bacteria">Bacteria</a></li>
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Yeast">Yeast</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Microfluidics">Microfluidics</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Microfluidics">Microfluidics</a></li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Yeast">Yeast</a></li>
+
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Protocol">Protocols</a></li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/I.T">I.T</a></li>
+
-
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Protocol">Protocol</a></li>
+
           </ul>
           </ul>
         </li>
         </li>
Line 95: Line 92:
   </div><!-- /.container-fluid -->
   </div><!-- /.container-fluid -->
</nav>
</nav>
-
 
<!-- END MENU -->
<!-- END MENU -->
-
 
-
<!-- ABSTRACT -->
 
<div class="container">
<div class="container">
Line 107: Line 101:
<ol class="breadcrumb breadcrumb-arrow">
<ol class="breadcrumb breadcrumb-arrow">
                   <li><a href="https://2014.igem.org/Team:EPF_Lausanne"><i class="glyphicon glyphicon-home"></i> Home</a></li>
                   <li><a href="https://2014.igem.org/Team:EPF_Lausanne"><i class="glyphicon glyphicon-home"></i> Home</a></li>
-
                   <li class="dropdown"><a href="#"><i class="glyphicon glyphicon-star"></i> Achievements</a> <b class="caret"></b>
+
                   <li class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown"><i class="glyphicon glyphicon-cog"></i> Project <b class="caret"></b></a>
                     <ul class="dropdown-menu">
                     <ul class="dropdown-menu">
-
                       <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Making/PartI">Part I</a></li>
+
                       <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Overview">Overview</a></li>
-
                       <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Making/PartII">Part II</a></li>
+
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Stress Responsive Bacteria</a></li>
 +
                       <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">Osmo Responsive Yeast</a></li>
 +
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Hardware">Hardware</a></li>
 +
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Applications">Applications</a></li>
                     </ul>
                     </ul>
                   </li>
                   </li>
-
                   <li class="active"><span><i class="glyphicon glyphicon-th-list"></i> Parts</span></li>
+
                   <li class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown"><i class="glyphicon glyphicon-search"></i> Microfluidics <b class="caret"></b></a>
 +
                    <ul class="dropdown-menu">
 +
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Designing">Designing a chip</a></li>
 +
 
 +
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Making/PartI">Making a chip: Part I</a></li>
 +
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Making/PartII">Making a chip: Part II</a></li>
 +
                    </ul>
 +
                  </li>
 +
 
 +
                  <li class="active"><span>Overview</span></li>
                 </ol>
                 </ol>
</div>
</div>
Line 124: Line 130:
<div class="whitebg box">
<div class="whitebg box">
 +
<a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Designing" class="btn btn-primary pull-right" role="button">Next step: Designing a chip -></a>
-
<!-- PARTS -->
+
<h1 class="cntr">Microfluidics</h1>
 +
<br/>
-
<div id="parts">
+
<div class="cntr">
-
<div class="align-left">
+
<a href="https://static.igem.org/mediawiki/2014/d/d8/EPFLmicrofluidics.JPG" data-lightbox="image-1" data-title="EPFL microfluidic chips"><img src="https://static.igem.org/mediawiki/2014/d/d8/EPFLmicrofluidics.JPG" class="img-responsive img-border"></a>
 +
</div>
-
<h1 class="cntr">PARTS</h1>
+
<!--<p class="lead">Our Biopad is implemented in a microfluidic chip. This tool allows all kinds of analytical experiments and is increasingly used in biological research. From fabrication to applications, find out more about this awesome device here!</p>-->
 +
<br/><br/>
 +
<h2 id="syntheticbiology">Microfluidics and synthetic biology</h2>
-
<section id="dna">
+
<br />
-
<h3 class="section-heading">DNA parts submitted by the 2014 EPFL iGEM team</h3>
+
<p>Microfluidics is an efficient tool for biological experiments. Its fields of applications go from gene regulatory network analysis to antibody screening. Several laboratory techniques can be adapted to these devices, such as DNA amplification, protein separation or cell sorting.</p>  
-
<p class="lead">
+
<p>The chips are generally fabricated from elastomeric materials, such as polydimethylsiloxane (PDMS) and contain micron-sized channels with integrated micromechanical tools (mixer, valve, pump…). This allows massive parallelisation as well as great modularity of the experiments.</p>
-
Our team submitted a total of 55 Biobricks (biobrick 51 does not exist).</p>
+
-
<p class="lead">
+
-
In addition, 4 microfluidic designs have also been submitted to the registry.</p>
+
-
<table class="table table-striped table-hover" id="biobricks_list">
+
-
  <tr>
+
-
    <th>Biobrick</th>
+
-
    <th>What it is</th>
+
-
    <th>Function</th>
+
-
    <th>Why do we use it?</th>
+
-
    <th>Group</th>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486000</td>
+
-
    <td>CpxR coding sequence</td>
+
-
    <td>Transcription factor</td>
+
-
    <td>To make most of our biobricks!</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486001</td>
+
-
    <td>CpxR under arabinose promoter</td>
+
-
    <td>Treanscription factor</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486002</td>
+
-
    <td>PAra + sfGFP CpxR [Nterm]</td>
+
-
    <td>Expresses fused protein</td>
+
-
    <td>Test CpxR expression & Ara promoter</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486003</td>
+
-
    <td>Flexible linker</td>
+
-
    <td>Attaches two proteins together</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486004</td>
+
-
    <td>Flexible linker</td>
+
-
    <td>Attaches two proteins together</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486005</td>
+
-
    <td>PAra + CpxR sfGFP [Cterm]</td>
+
-
    <td>Expresses fused protein</td>
+
-
    <td>Test CpxR expression & Ara promoter</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486006</td>
+
-
    <td>IFP[1]</td>
+
-
    <td>N terminus of split IFP</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486007</td>
+
-
    <td>IFP[2]</td>
+
-
    <td>C terminus of split IFP</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486008</td>
+
-
    <td>CxpR & Split IFP1.4 [Cterm + Cterm]</td>
+
-
    <td>Two CpxR CDS, each C terminus attached to a moiety of IFP</td>
+
-
    <td>Characterize CpxR dimerization</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486009</td>
+
-
    <td>CxpR & Split IFP1.4 [Nterm + Nterm]</td>
+
-
    <td>Two CpxR CDS, each N terminus attached to a moiety of IFP</td>
+
-
    <td>Characterize CpxR dimerization</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486010</td>
+
-
    <td>CxpR & Split IFP1.4 [Nterm + Cterm]</td>
+
-
    <td>Two CpxR CDS, each attached to a moiety of IFP</td>
+
-
    <td>Characterize CpxR dimerization</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486011</td>
+
-
    <td>CxpR & Split IFP1.4 [Cterm + Nterm]</td>
+
-
    <td>Two CpxR CDS, each attached to a moiety of IFP</td>
+
-
    <td>Characterize CpxR dimerization</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486012</td>
+
-
    <td>CpxR + IFP[1]</td>
+
-
    <td>CpxR with the Nterm moiety of IFP attached at its C terminus</td>
+
-
    <td>Intermediate & control</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486013</td>
+
-
    <td>CpxR + IFP[2]</td>
+
-
    <td>CpxR with the Cterm moiety of IFP attached at its C terminus</td>
+
-
    <td>Intermediate & control</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486014</td>
+
-
    <td>IFP[1] + CpxR</td>
+
-
    <td>CpxR with the Nterm moiety of IFP attached at its N terminus</td>
+
-
    <td>Intermediate & control</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486015</td>
+
-
    <td>IFP[2] + CpxR</td>
+
-
    <td>CpxR with the Cterm moiety of IFP attached at its N terminus</td>
+
-
    <td>Intermediate & control</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486016</td>
+
-
    <td>fLuc[1]</td>
+
-
    <td>N terminus moiety of the firefly luciferase</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486017</td>
+
-
    <td>fLuc[2]</td>
+
-
    <td>C terminus moiety of the firefly luciferase</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486018</td>
+
-
    <td>PAra + fLuc[1] + fLuc[2]</td>
+
-
    <td>Split firefly luciferase under arabinose promoter</td>
+
-
    <td>Control</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486019</td>
+
-
    <td>rLuc[1]</td>
+
-
    <td>C terminus moiety of the renilla luciferase</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486020</td>
+
-
    <td>rLuc[2]</td>
+
-
    <td>N terminus moiety of the renilla luciferase</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486021</td>
+
-
    <td>PAra + rLuc[1] + rLuc[2]</td>
+
-
    <td>Split renilla luciferase under arabinose promoter</td>
+
-
    <td>Control</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486022</td>
+
-
    <td>rLuc</td>
+
-
    <td>Full renilla luciferase</td>
+
-
    <td>Control</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
<tr>
+
-
    <td class="biobrick_name">BBa_K1486023</td>
+
-
    <td>Yeast sfGFP</td>
+
-
    <td>Superfolder GFP for yeast cells</td>
+
-
    <td>Reporter</td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486024</td>
+
-
    <td>Kan</td>
+
-
    <td>Yeast kanamycin resistance gene</td>
+
-
    <td>Selection marker</td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486025</td>
+
-
    <td>ADH1 terminator</td>
+
-
    <td>Terminator</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486026</td>
+
-
    <td>Yeast sfGFP + Kan</td>
+
-
    <td>Yeast sfGFP attached to the yeast kanamycin resistance gene</td>
+
-
    <td>Control the expression of pbs2</td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
<tr>
+
-
    <td class="biobrick_name">BBa_K1486027</td>
+
-
    <td>rLuc + Kan</td>
+
-
    <td>Renilla luciferase attached to the kanamycin resistance gene</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486028</td>
+
-
    <td>Yeast sfGFP[1]</td>
+
-
    <td>N terminal moiety of split yeast sfGFP</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486029</td>
+
-
    <td>sfGFP[1] + kan</td>
+
-
    <td>Nterm moiety of split yeast sfGFP attached to yeast kanamycin resistance gene</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486030</td>
+
-
    <td>rLuc[1] + kan</td>
+
-
    <td>Nterm moiety of split renilla luciferase attached to yeast kanamycin resistance gene</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486031</td>
+
-
    <td>Ura</td>
+
-
    <td>CDS for Uracil (yeast selective purposes)</td>
+
-
    <td>Confer resistance to Uracil-deprived medium</td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
<tr>
+
-
    <td class="biobrick_name">BBa_K1486032</td>
+
-
    <td>Yeast sfGFP + Ura</td>
+
-
    <td>Yeast sfGFP attached to the Uracil CDS</td>
+
-
    <td>Control the expression of hog1</td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486033</td>
+
-
    <td>rLuc + Ura</td>
+
-
    <td>Renilla luciferase attached to the Uracil CDS</td>
+
-
    <td>Control the expression of hog1</td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486034</td>
+
-
    <td>yeast sfGFP[2]</td>
+
-
    <td>C terminal moiety of split the yeast sfGFP</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486035</td>
+
-
    <td>yeast sfGFP[2] + Ura</td>
+
-
    <td>Cterm moiety of split yeast sfGFP attached to the Uracil CDS</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
<tr>
+
-
    <td class="biobrick_name">BBa_K1486036</td>
+
-
    <td>rLuc[2] + Ura</td>
+
-
    <td>Cterm moiety of split renilla luciferase attached to the Uracil CDS</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486037</td>
+
-
    <td>linker</td>
+
-
    <td>Attaches two proteins together</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486038</td>
+
-
    <td>sfGFP[1]</td>
+
-
    <td>N terminus moiety of split superfolder GFP</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486039</td>
+
-
    <td>sfGFP[2]</td>
+
-
    <td>C terminus moiety of split superfolder GFP</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486040</td>
+
-
    <td>sfGFP[1] + CpxR</td>
+
-
    <td>N terminus moiety of split sfGFP attached to CpxR</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486041</td>
+
-
    <td>sfGFP[2] + CpxR</td>
+
-
    <td>C terminus moiety of split sfGFP attached to CpxR</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486042</td>
+
-
    <td>LZip</td>
+
-
    <td>Monomer of leucine zipper TF</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486043</td>
+
-
    <td>LZip + split rLuc</td>
+
-
    <td>Two Leucine Zipper monomers, each attached to a different split rLuc moiety</td>
+
-
    <td>Control for split rLuc assays</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486044</td>
+
-
    <td>mut IFP[1]</td>
+
-
    <td>Biobrick-compatible IFP[1]</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486045</td>
+
-
    <td>mut IFP[2]</td>
+
-
    <td>Biobrick-compatible IFP[2]</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486046</td>
+
-
    <td>CpxR promoter FW</td>
+
-
    <td>CpxR binding-region in forward direction</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486047</td>
+
-
    <td>CpxR promoter RV</td>
+
-
    <td>CpxR binding-region in reverse direction</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486048</td>
+
-
    <td>CpxR reporter</td>
+
-
    <td>Calgary's CpxR reporter repaired (sequence was missing)</td>
+
-
    <td>To see when CpxR is active</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486049</td>
+
-
    <td>CpxR promoter FW + RFP</td>
+
-
    <td>Reporter of CpxR</td>
+
-
    <td>Test the direction of the complete CpxR promoter</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486050</td>
+
-
    <td>CpxR promoter RV + RFP</td>
+
-
    <td>Reporter of CpxR</td>
+
-
    <td>Test the direction of the complete CpxR promoter</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486052</td>
+
-
    <td>Spacer</td>
+
-
    <td>40 bases placed between constructs</td>
+
-
    <td>Separate two constructs in the same plasmid</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486053</td>
+
-
    <td>Linker</td>
+
-
    <td>10 amino-acid linker</td>
+
-
    <td>Attach CheY/Z to split luciferases</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486054</td>
+
-
    <td>CheY/CheZ rLuc</td>
+
-
    <td>CheY and CheZ, each attached to a moiety of split renilla luciferase</td>
+
-
    <td>Positive control for the split rLuc</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486055</td>
+
-
    <td>CheY/CheZ fLuc</td>
+
-
    <td>CheY and CheZ, each attached to a moiety of split firefly luciferase</td>
+
-
    <td>Positive control for the split fLuc</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486056</td>
+
-
    <td>CxpR & Split mut IFP1.4 [Cterm + Cterm]</td>
+
-
    <td>Two CpxR CDS, each C terminus attached to a moiety of the biobrick-compatible IFP</td>
+
-
    <td>Characterize CpxR dimerization</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
</table>
+
-
</section>
+
<p>Most soluble reagents can be used, including DNA, proteins and small molecule libraries. As we focused our work on <i>E. coli</i> and <i>S. cerevisiae</i>, our experiments included on-chip culture of these species. We first used the <a target="_blank" href="http://link.springer.com/protocol/10.1007%2F978-1-61779-292-2_6">MITOMI chip</a> which was invented in the lab of our supervisor Pr. Maerkl. We then designed new chips that were more adapted to stress the cells by pressure, as needed to implement the final “BioPad”.</p>
 +
<br/>
-
<br /><br />
 
 +
<p>The major benefits of using microfluidic chips are:</p>
 +
<ul style="padding-left:80px">
 +
  <li>Low volume required (microliter range)</li>
 +
  <li>High-throughput</li>
 +
  <li>High precision and sensitive detection</li>
 +
  <li>Low cost</li>
 +
  <li>Wide range of applications</li>
 +
  <li>Safe, enclosed environment (for more information go to the <a target="blank" href="https://2014.igem.org/Team:EPF_Lausanne/Safety">safety page</a>)</li>
 +
</ul>
 +
<br/>
-
<section id="microfluidics">
 
-
<h3 class="section-heading">Microfluidics parts (chips created)</h3>
 
-
<p class="lead">
 
-
Our team designed and made 4 microfluidic chips. At the beginning, we also used the <a target="_blank" href="http://link.springer.com/protocol/10.1007%2F978-1-61779-292-2_6">MITOMI chip</a>.</p>
 
-
<p class="lead">When designing the chips, the team took into account the future users and the current iGEM classification of parts. We considered it best to construct our chips as composite microfluidic parts, so their sub-parts could be used and combined in multiple ways. The flow and control layers can be separated and reused, as well as all the basic structures (chamber + connecting channel), nodes, array parts,...</p>
 
 +
<p>Some examples of microfluidic experiments:</p>
 +
<ul style="padding-left:80px">
 +
  <li>Transcription factors – DNA interactions</li>
 +
  <li>Protein – protein interactions</li>
 +
  <li>On-chip gene synthesis: protein expression from coding DNA</li>
 +
  <li>On-chip chemostat chambers: can be used to trace the fate of a single bacterium or to grow bacteria/yeast</li>
 +
  <li>Antibody characterisation</li>
 +
</ul>
-
<!-- send all lines here: https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Designing -->
+
<br/>
-
<table class="table table-striped table-hover" id="chips_list">
+
<h2 id="whyinourproject">Why use microfluidics in our project?</h2>
-
  <tr>
+
<br />
-
    <th>Name</th>
+
<p>As we went on with the conception of our BioPad idea, we soon had to find a solution to the question: where are we going to store our bacteria? We then came up with the idea of using a microfluidic chip as that could play the role of “container” and interface. Indeed this device fulfils most of our needs, as our support required to be cheap and easy to use. Additionally, the grid-like design of our chips, with their hundreds of chambers, was adapted to the need of having “pixels”, which would increase the precision of the readout. We also had the opportunity to use the expertise of our supervisors and to easily get in touch with the techniques of using microfluidics.</p>
-
    <th>Main Function</th>
+
<p>Moreover the PDMS allows the chip to be compressible and thus transmit the outer touch pressure to the bacteria in the chambers, hence we had our interface. Finally a simple but important point is the transparent colour of the chip which allows to scan fluorescence/luminescence through it.</p>
-
  </tr>
+
-
  <tr>
+
-
    <td>SmashColi</td>
+
-
    <td>To be able to separate the chip in 4 different compartments and apply 4 different pressures on each row of chambers.</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td>BioPad</td>
+
-
    <td>A large and simple microfluidic chip containing 9600 chambers in which the cells are contained in. Each chamber acts as a pixel for the BioPad project.</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td>SafetyColi</td>
+
-
    <td>As a result of our Safety page, we decided to create a chip that is able to seal the bacteria in the chip, preventing them to leave the chip.</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td>FilterColi</td>
+
-
    <td>To successfully immerse cells in a certain solution, this chip was designed to flow in the new medium in the chambers instead of doing it by diffusion.</td>
+
-
  </tr>
+
-
</table>
+
-
</section>
+
 +
<br/>
 +
<h2 id="howdoesitworks">How does it work ?</h2>
 +
<br/>
-
<br /><br />
+
<img src="https://static.igem.org/mediawiki/2014/0/03/Chip_sketch.png" alt="Chip sketch" class="cntr img-responsive" />
 +
 
 +
<br />
 +
<br />
 +
<ul>
 +
  <li>a. Disassembled view of a microfluidic chip showing all the different components and the region where bacteria/yeasts are located</li>
 +
  <li>b. Cross section of the chip showing how a valve works: when pressure is applied in the control channel, the ceiling of the flow layer is pushed against the glass slide, which closes the flow channel</li>
 +
  <li>c. When pressure is retrieved, the ceiling elevates again, which opens the flow channel</li>
 +
</ul>
 +
 
 +
<br />
 +
 
 +
<p>A standard microfluidic chip is a grid of interconnected channels and chambers. It is usually composed of one or two PDMS layers placed on a glass slide. In our case we used two layers, the so called flow layer and control layer. The bacteria are enclosed between the flow layer and the glass slide. By its shape, the flow layer is responsible for the patterns of the chip. In our case, the pattern consists of several parallel rows of chambers. The control layer comes on top of the flow layer and allows to open or close valves by pressing or releasing water in the corresponding channels. Thus a mechanical pressure can be applied from the control layer on the flow layer, enabling a precise compartmentalization of the chip.</p>
 +
 
 +
<p>Once the chip is ready to be used, small tubings of 0.35mm diameter are plugged in the inlets of the chip (see gif below). The tubings that are plugged in the control inlets are loaded with water and enable the opening or closing of valves. The tubings that are plugged into the flow inlets are used to flow bacteria/yeast or various solutions in the chambers. </p>
 +
 
 +
 
 +
<br />
 +
 
 +
<p>Pictures of the MITOMI chip and our Smash-Coli chip</p>
 +
 
 +
<div class="row">
 +
<div class="col col-md-6 cntr">
 +
    <div class="thumbnail">
 +
  <a href="https://static.igem.org/mediawiki/2014/c/c6/Mitomi_che.PNG" data-lightbox="image-1" data-title="Mitomi"><img src="https://static.igem.org/mediawiki/2014/c/c6/Mitomi_che.PNG" alt="Mitomi" width="300" /></a>
 +
      <div class="caption">
 +
        <p>MITOMI chip filled with bacteria expressing GFP</p>
 +
      </div>
 +
    </div>
 +
</div>
 +
<div class="col col-md-6 cntr">
 +
    <div class="thumbnail">
 +
<a href="https://static.igem.org/mediawiki/2014/5/51/Killcoli.PNG" data-lightbox="image-1" data-title="Smash-coli"><img src="https://static.igem.org/mediawiki/2014/5/51/Killcoli.PNG" alt="Killcoli" width="340" /></a>
 +
      <div class="caption">
 +
        <p>“Smash-coli” chip, here with <br/>expression of RFP</p>
 +
      </div>
 +
    </div>
</div>
</div>
</div>
</div>
 +
                <div class="cntr">
 +
                  <a href="https://static.igem.org/mediawiki/2014/b/b5/Loading-ChiP.gif" data-lightbox="gif"><img src="https://static.igem.org/mediawiki/2014/b/b5/Loading-ChiP.gif" class="img-responsive img-border" /></a>
 +
                </div>
 +
 +
<br /><br />
 +
 +
<a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Designing" class="btn btn-primary pull-right" role="button">Next step: Designing a chip -></a>
 +
 +
<div class="clearfix"></div>
 +
 +
 +
<h3 id="referencesmicroflu"> References </h3>
 +
<p>
 +
<ol>
 +
 +
<li><a target="_blank" href="http://link.springer.com/protocol/10.1007%2F978-1-61779-292-2_6">Rockel, S., Geertz, M., & Maerkl, S. J. (2012). MITOMI: A Microfluidic Platform for In Vitro Characterization of Transcription Factor–DNA Interaction. In Gene Regulatory Networks (pp. 97-114). Humana Press.</a></li>
 +
<li><a target="_blank" href="http://nar.oxfordjournals.org/content/41/4/e52.long">Rockel, S., Geertz, M., Hens, K., Deplancke, B., & Maerkl, S. J. (2012). iSLIM: a comprehensive approach to mapping and characterizing gene regulatory networks. Nucleic acids research, gks1323.</a></li>
 +
 +
</ol>
</div>
</div>
</div>
</div>
 +
<div class="col col-md-3">
<div class="col col-md-3">
<nav id="affix-nav" class="sidebar hidden-sm hidden-xs">
<nav id="affix-nav" class="sidebar hidden-sm hidden-xs">
-
     <ul class="nav sidenav box" data-spy="affix" data-offset-top="200" data-offset-bottom="400">
+
     <ul class="nav sidenav box" data-spy="affix" data-offset-top="200" data-offset-bottom="600">
-
         <li class="active"><a href="#dna">DNA Parts</a></li>
+
         <li class="active"><a href="#syntheticbiology">Microfluidics & synthetic biology</a></li>
-
         <li><a href="#microfluidics">Microfluidics Parts</a></li>
+
         <li><a href="#whyinourproject">Why use microfluidics in our project?</a></li>
 +
<li><a href="#howdoesitworks">How does it work ?</a></li>
 +
<li><a href="#referencesmicroflu">References</a></li>
     </ul>
     </ul>
</nav>
</nav>
</div>
</div>
 +
 +
 +
</div>
</div>
</div>
</div>
-
<!-- END ABSTRACT -->
 
-
<script type="text/javascript">
+
 
-
    $(document).ready(function() {
+
 
-
      $('body').scrollspy({ target: '#affix-nav' });
+
 
-
      $('#biobricks_list tr').click(function (e) {
+
<!-- END ABSTRACT -->
-
        text = $(this).children('td.biobrick_name').first().text();
+
-
        if (text != '') {
+
-
          return window.open('http://parts.igem.org/Part:' + text, '_blank');
+
-
        }
+
-
      });
+
-
    });
+
-
</script>
+
</html>
</html>
{{CSS/EPFL_bottom}}
{{CSS/EPFL_bottom}}

Latest revision as of 22:58, 17 October 2014

Next step: Designing a chip ->

Microfluidics




Microfluidics and synthetic biology


Microfluidics is an efficient tool for biological experiments. Its fields of applications go from gene regulatory network analysis to antibody screening. Several laboratory techniques can be adapted to these devices, such as DNA amplification, protein separation or cell sorting.

The chips are generally fabricated from elastomeric materials, such as polydimethylsiloxane (PDMS) and contain micron-sized channels with integrated micromechanical tools (mixer, valve, pump…). This allows massive parallelisation as well as great modularity of the experiments.

Most soluble reagents can be used, including DNA, proteins and small molecule libraries. As we focused our work on E. coli and S. cerevisiae, our experiments included on-chip culture of these species. We first used the MITOMI chip which was invented in the lab of our supervisor Pr. Maerkl. We then designed new chips that were more adapted to stress the cells by pressure, as needed to implement the final “BioPad”.


The major benefits of using microfluidic chips are:

  • Low volume required (microliter range)
  • High-throughput
  • High precision and sensitive detection
  • Low cost
  • Wide range of applications
  • Safe, enclosed environment (for more information go to the safety page)

Some examples of microfluidic experiments:

  • Transcription factors – DNA interactions
  • Protein – protein interactions
  • On-chip gene synthesis: protein expression from coding DNA
  • On-chip chemostat chambers: can be used to trace the fate of a single bacterium or to grow bacteria/yeast
  • Antibody characterisation

Why use microfluidics in our project?


As we went on with the conception of our BioPad idea, we soon had to find a solution to the question: where are we going to store our bacteria? We then came up with the idea of using a microfluidic chip as that could play the role of “container” and interface. Indeed this device fulfils most of our needs, as our support required to be cheap and easy to use. Additionally, the grid-like design of our chips, with their hundreds of chambers, was adapted to the need of having “pixels”, which would increase the precision of the readout. We also had the opportunity to use the expertise of our supervisors and to easily get in touch with the techniques of using microfluidics.

Moreover the PDMS allows the chip to be compressible and thus transmit the outer touch pressure to the bacteria in the chambers, hence we had our interface. Finally a simple but important point is the transparent colour of the chip which allows to scan fluorescence/luminescence through it.


How does it work ?


Chip sketch

  • a. Disassembled view of a microfluidic chip showing all the different components and the region where bacteria/yeasts are located
  • b. Cross section of the chip showing how a valve works: when pressure is applied in the control channel, the ceiling of the flow layer is pushed against the glass slide, which closes the flow channel
  • c. When pressure is retrieved, the ceiling elevates again, which opens the flow channel

A standard microfluidic chip is a grid of interconnected channels and chambers. It is usually composed of one or two PDMS layers placed on a glass slide. In our case we used two layers, the so called flow layer and control layer. The bacteria are enclosed between the flow layer and the glass slide. By its shape, the flow layer is responsible for the patterns of the chip. In our case, the pattern consists of several parallel rows of chambers. The control layer comes on top of the flow layer and allows to open or close valves by pressing or releasing water in the corresponding channels. Thus a mechanical pressure can be applied from the control layer on the flow layer, enabling a precise compartmentalization of the chip.

Once the chip is ready to be used, small tubings of 0.35mm diameter are plugged in the inlets of the chip (see gif below). The tubings that are plugged in the control inlets are loaded with water and enable the opening or closing of valves. The tubings that are plugged into the flow inlets are used to flow bacteria/yeast or various solutions in the chambers.


Pictures of the MITOMI chip and our Smash-Coli chip

Mitomi

MITOMI chip filled with bacteria expressing GFP

Killcoli

“Smash-coli” chip, here with
expression of RFP



Next step: Designing a chip ->

References

  1. Rockel, S., Geertz, M., & Maerkl, S. J. (2012). MITOMI: A Microfluidic Platform for In Vitro Characterization of Transcription Factor–DNA Interaction. In Gene Regulatory Networks (pp. 97-114). Humana Press.
  2. Rockel, S., Geertz, M., Hens, K., Deplancke, B., & Maerkl, S. J. (2012). iSLIM: a comprehensive approach to mapping and characterizing gene regulatory networks. Nucleic acids research, gks1323.

Sponsors