Team:SCU-China/Modeling
From 2014.igem.org
(Difference between revisions)
Line 237: | Line 237: | ||
</td> | </td> | ||
</tr> | </tr> | ||
- | </table><p><img width="663" height="192" src=" | + | </table><p><img width="663" height="192" src="https://static.igem.org/mediawiki/2014/f/f5/Model2596.png"></p><p>So we got future concentration as 100uM as the experimental concentration to detect the best time of our experiment.</p><table class="table table-striped"><tr><td><p>Time</p><p>(start)</p> |
</td><td><p>18:34</p> | </td><td><p>18:34</p> | ||
</td><td><p>19:23</p> | </td><td><p>19:23</p> | ||
Line 334: | Line 334: | ||
</td> | </td> | ||
</tr> | </tr> | ||
- | </table><p><img width="586" height="232" src=" | + | </table><p><img width="586" height="232" src="https://static.igem.org/mediawiki/2014/4/4d/Model3275.png"></p><p>To make the model more exact similar experiment were made as follows to test if the model was right enough.</p><p><img width="576" height="222" src="https://static.igem.org/mediawiki/2014/3/3f/Model3413.png"></p><p>This is not a good model which data are not so correspond with our first data. But the coincidence of the two threshold suggest such a truth that both the two model should be correct and it can be used to characterize some subset of the final equation.</p><p>We would like to provide more data to build our model.</p><p>Futuremore we substracted the scale of our total experimental time and add more groups of experiments to investigate the relationship among fluorescence intensities, time and concentration of inducers at the same time.</p><p>Parameter calculation and testing goodness of fit were made again. Then a 3D model was built with matlab.</p><p>The picture of this model was shown as follows.</p><p>But we don’t think any single equation could characterize the complicated geometric surface.</p><p><img width="437" height="223" src="https://static.igem.org/mediawiki/2014/b/b7/Model4193.png"></p><p><img width="432" height="219" src="https://static.igem.org/mediawiki/2014/3/3b/Model4196.png"><img width="440" height="219" src="https://static.igem.org/mediawiki/2014/8/88/Model4197.png"><img width="434" height="223" src="https://static.igem.org/mediawiki/2014/d/db/Model4198.png"><img width="437" height="209" src="https://static.igem.org/mediawiki/2014/d/d3/Model4199.png"></p><p>And then we change our method to get another equation as follows.</p><p>Linear model Poly11:<br>     f(x,y)=p00+p10*x+p01*y<br>Coefficients (with 95% confidence bounds):<br>       p00 =36.24(29.86, 42.63)<br>       p10 =0.0007142(-0.007281, 0.008709)<br>       p01 =-0.6192(-1.923, 0.6847)<br>Goodness of fit:<br>  SSE: 1968<br>  R-square: 0.009106<br>  Adjusted R-square: -0.01132<br>  RMSE: 4.504</p><p>SSE -- The sum of squares due to error. This statistic measures the deviation of the responses from the fitted values of the responses. A value closer to 0 indicates a better fit. <br>R-square -- The coefficient of multiple determination. This statistic measures how successful the fit is in explaining the variation of the data. A value closer to 1 indicates a better fit. <br>Adjusted R-square -- The degree of freedom adjusted R-square. A value closer to 1 indicates a better fit. It is generally the best indicator of the fit quality when you add additional coefficients to your model. <br>RMSE -- The root mean squared error. A value closer to 0 indicates a better fit.</p><p>As you can see from the introduction section, there are some similarities among the three kinds of cells, if we can deduce one of those three model equations, predicting the final layout of our bacteria is going to be accessible.</p> |
Revision as of 22:25, 17 October 2014