Team:Dundee/Project/bdsf
From 2014.igem.org
(27 intermediate revisions not shown) | |||
Line 41: | Line 41: | ||
<p> | <p> | ||
- | Cis-2 fatty acids are used by many bacterial species as signalling molecules to facilitate inter- and intra-species communication and as a method of regulation of gene expression. <i>Burkholderia</i> Diffusible Signalling Factor (BDSF) is a | + | Cis-2 fatty acids are used by many bacterial species as signalling molecules to facilitate inter- and intra-species communication and as a method of regulation of gene expression. <i>Burkholderia</i> Diffusible Signalling Factor (BDSF) is a cis-2-dodecenoic acid that is produced exclusively by the pathogenic bacteria of the <i>Burkholderia cepacia </i>complex where it regulates expression of genes involved in virulence<sup>1,2</sup>. It is structurally similar to, but distinct from, DSF (cis-11-methyl-2-dodecenoic acid) produced by <i>Stenotrophomonas maltophilia</i>. |
<br> | <br> | ||
<br> | <br> | ||
- | In <i>B. cenocepacia</i> BDSF activates gene expression through a two component phosphorelay. BCAM0227 is a transmembrane histidine kinase which phosphorylates the response regulator <a href="http://parts.igem.org/Part:BBa_K1315007">BCAM0228</a> in the presence of exogenous BDSF. | + | In <i>B. cenocepacia</i> BDSF activates gene expression through a two component phosphorelay. BCAM0227 is a transmembrane histidine kinase which phosphorylates the response regulator <a href="http://parts.igem.org/Part:BBa_K1315007">BCAM0228</a> in the presence of exogenous BDSF. BCAM0228 then binds and activates transcription of <a href="http://parts.igem.org/Part:BBa_K1315008"><i>cblD</i></a>, a gene involved in <i>Burkholderia</i> virulence<sup>2</sup>. |
<br> | <br> | ||
<br> | <br> | ||
- | We engineered <i>E. coli</i> to express this signal transduction system for the detection of BDSF, with a promoter-less <i>gfp</i> gene downstream of the <i>cblD</i> promoter. With this, our sensor will detect any BDSF in its environment via the BCAM0227 receptor and activate GFP production. | + | We engineered <i>E. coli</i> to express this signal transduction system for the detection of BDSF (as shown in Fig 1), with a promoter-less <a href="http://parts.igem.org/Part:BBa_E0040"><i>gfp</i></a> gene downstream of the <i>cblD</i> promoter. With this, our sensor will detect any BDSF in its environment via the BCAM0227 receptor and activate GFP production. |
</p> | </p> | ||
Line 60: | Line 60: | ||
<p> | <p> | ||
- | Chromosomal DNA from <i>Burkholderia cenocepacia</i> J2315 was kindly gifted to us by Robert Ryan and Shi-Qi An from the Division of Molecular Microbiology in the College of Life Sciences at the University of Dundee. This was used as template for the amplification of | + | Chromosomal DNA from <i>Burkholderia cenocepacia</i> J2315 was kindly gifted to us by Drs Robert Ryan and Shi-Qi An from the Division of Molecular Microbiology in the College of Life Sciences at the University of Dundee. This was used as template for the amplification of BCAM0228 and the <i>cblD</i> promoter region. |
+ | |||
+ | |||
<br> | <br> | ||
<br> | <br> | ||
- | The <i>cblD</i> promoter region was cloned into the pSB1C3 plasmid (to give | + | The <i>cblD</i> promoter region was cloned into the pSB1C3 plasmid (to give BioBrick <a href="http://parts.igem.org/Part:BBa_K1315008">BBa_K1315008</a>), and was then subcloned into pBluescript. Promoterless <i>gfp</i> was amplified (using <a href="http://parts.igem.org/Part:BBa_K562012">BBa_K562012</a> as a template), and was cloned into pBluescript downstream of the <i>cblD</i> promoter. The <i>manA</i> promoter-<i>gfp</i> construct was then subcloned into pUniprom. A schematic of our completed construct can be seen below (Fig 2). |
<br> | <br> | ||
<br> | <br> | ||
- | A modified version of the BCAM0227 gene which was compatible with | + | A modified version of the BCAM0227 gene which was compatible with BioBrick specifications and standards was synthesised by a third party (Dundee Cell Products). This was subsequently subcloned into the pUniprom vector harbouring P<sub>cblD</sub>-<i>gfp</i>. |
<br> | <br> | ||
<br> | <br> | ||
- | To adhere to the iGEM rules and regulations, it was necessary to remove an illegal <i>Eco</i>RI restriction site present in <i>BCAM0228</i>. The modified gene was cloned into the pSB1C3 plasmid (to give | + | To adhere to the iGEM rules and regulations, it was necessary to remove an illegal <i>Eco</i>RI restriction site present in <i>BCAM0228</i>. The modified gene was cloned into the pSB1C3 plasmid (to give BioBrick <a href="http://parts.igem.org/Part:BBa_K1315007">BBa_K1315007</a>). <i>BCAM0228</i> was then subcloned into the pUniprom vector that already harboured P<sub><i>manA</i></sub>-<i>gfp</i> and <i>BCAM0227</i>. To facilitate immunochemistry, we chose to supply BCAM0227 and BCAM0228 with an influenza virus hemagglutinin (HA) tag which can be detected with commercial antibodies. This tag was added to the C-terminus of each protein. |
</p> | </p> | ||
Line 77: | Line 79: | ||
<div class="row"> | <div class="row"> | ||
- | <div class="col-xs- | + | <div class="col-xs-2"> |
+ | </div> | ||
+ | <div class="col-xs-8"> | ||
- | <img class=" | + | <img class=" img-responsive" src="https://static.igem.org/mediawiki/2014/8/83/2bdsf2.png"/> |
</div> | </div> | ||
+ | <div class="col-xs-2"> | ||
+ | </div> | ||
+ | |||
</div> | </div> | ||
Line 102: | Line 109: | ||
<div class="col-xs-12"> | <div class="col-xs-12"> | ||
<p> | <p> | ||
- | Initially, Western blots were undertaken to test for the sequential production of BCAM0227-HA and BCAM0228-HA. An overnight culture of the cells were lysed and proteins separated by SDS-PAGE in a 12% acrylamide gel. Anti-HA antibodies linked to horseradish peroxidase were used for detection of BCAM0227 and | + | Initially, Western blots were undertaken to test for the sequential production of BCAM0227-HA and BCAM0228-HA. An overnight culture of the cells were lysed and proteins separated by SDS-PAGE in a 12% acrylamide gel. Anti-HA antibodies linked to horseradish peroxidase were used for detection of BCAM0227 and BCAM0228. Fig 3 shows that both of the proteins are being expressed in the system. |
</p> | </p> | ||
</div> | </div> | ||
Line 108: | Line 115: | ||
<div class="row"> | <div class="row"> | ||
- | <div class="col-xs- | + | <div class="col-xs-1"> |
+ | </div> | ||
+ | <div class="col-xs-10"> | ||
- | <img class=" | + | <img class="img-responsive" src="https://static.igem.org/mediawiki/2014/c/c5/3bdsf3.png" /> |
+ | </div> | ||
+ | <div class="col-xs-1"> | ||
</div> | </div> | ||
</div> | </div> | ||
Line 118: | Line 129: | ||
<p> | <p> | ||
<br> | <br> | ||
- | With all of the components of the system being produced, we could begin to test for a response to BDSF. To test how the system would respond to BDSF, cells containing the construct were cultured in LB medium and spiked with synthetic BDSF in DMSO at concentrations of | + | <br> |
+ | With all of the components of the system being produced, we could begin to test for a response to BDSF. To test how the system would respond to BDSF, cells containing the construct were cultured in LB medium and spiked with synthetic BDSF in DMSO at concentrations of 50 µM, which corresponds to the levels found in the sputum of lungs colonised by <i>Burkholderia</i><sup>3</sup> and 500 µM. A western blot with anti-GFP antibodies was performed on the treated cells alongside an un-spiked, BDSF-negative control, and MC1061 cells harbouring the empty pUniprom vector. The results are shown in Fig 4. | ||
</p> | </p> | ||
</div> | </div> | ||
Line 124: | Line 136: | ||
<div class="row"> | <div class="row"> | ||
- | <div class="col-xs- | + | <div class="col-xs-1"> |
- | + | </div> | |
- | + | <div class="col-xs-10"> | |
- | <img class= " | + | <img class= "img-responsive" src="https://static.igem.org/mediawiki/2014/9/94/4bdsf4.png"/> |
+ | </div> | ||
+ | <div class="col-xs-1"> | ||
</div> | </div> | ||
</div> | </div> | ||
Line 135: | Line 149: | ||
<div class="col-xs-12"> | <div class="col-xs-12"> | ||
<p> | <p> | ||
- | These results indicate that GFP production is activated regardless of the presence of BDSF. To test whether our <i>E. coli</i> chassis was responsible for activating GFP production, either via phosphorylation of BCAM0228 or by directly activating the <i>cblD</i> promoter, we made a new construct harbouring <i>cblD-gfp</i> and <i>BCAM0228-HA</i>, but lacking <i>BCAM0227</i>. Fig 5 shows that GFP was only produced in the presence of BCAM0228-HA. We therefore concluded that GFP output is likely caused by crosstalk by two component regulatory systems within <i>E. coli</i> promoting the phosphorylated state of the BCAM0228 response regulator. | + | <br> |
+ | <br> | ||
+ | These results indicate that GFP production is activated regardless of the presence of BDSF. To test whether our <i>E. coli</i> chassis was responsible for activating GFP production, either via phosphorylation of BCAM0228 or by directly activating the <i>cblD</i> promoter, we made a new construct harbouring P<i><sub>cblD</sub></i>-<i>gfp</i> and <i>BCAM0228-HA</i>, but lacking <i>BCAM0227</i>. Fig 5 shows that GFP was only produced in the presence of BCAM0228-HA. We therefore concluded that GFP output is likely caused by crosstalk by two component regulatory systems within <i>E. coli</i> promoting the phosphorylated state of the BCAM0228 response regulator. | ||
</p> | </p> | ||
</div> | </div> | ||
Line 142: | Line 158: | ||
<div class="row"> | <div class="row"> | ||
- | <div class="col-xs- | + | <div class="col-xs-1"> |
+ | </div> | ||
+ | <div class="col-xs-10"> | ||
- | <img class= " | + | <img class= "img-responsive" src="https://static.igem.org/mediawiki/2014/e/ed/55bdsf5.png" /> |
+ | </div> | ||
+ | <div class="col-xs-1"> | ||
</div> | </div> | ||
</div> | </div> | ||
Line 151: | Line 171: | ||
<div class="col-xs-12"> | <div class="col-xs-12"> | ||
<p> | <p> | ||
+ | <br> | ||
+ | <br> | ||
We are continuing to investigate this issue by screening <i>E. coli</i> mutants carrying deletions in genes coding for sensor kinases, taking advantage of the <i>E. coli</i> Keio mutant collection<sup>3</sup>. Alternatively it may be that BCAM0228 is being phosphorylated by a small molecular weight phosphate donor such acetylphosphate. Acetylphosphate production can be eliminated in a <i>pta-ackA</i> double deletion mutant. Further work is required before the BDSF sensor is fully functional. | We are continuing to investigate this issue by screening <i>E. coli</i> mutants carrying deletions in genes coding for sensor kinases, taking advantage of the <i>E. coli</i> Keio mutant collection<sup>3</sup>. Alternatively it may be that BCAM0228 is being phosphorylated by a small molecular weight phosphate donor such acetylphosphate. Acetylphosphate production can be eliminated in a <i>pta-ackA</i> double deletion mutant. Further work is required before the BDSF sensor is fully functional. | ||
</br> | </br> | ||
</br> | </br> | ||
- | The | + | The following parts were deposited as BioBricks: |
</br> | </br> | ||
</br> | </br> | ||
Line 169: | Line 191: | ||
<tbody> | <tbody> | ||
<tr> | <tr> | ||
- | <td>BCAM0228</td> | + | <td><i>BCAM0228</i></td> |
<td>BDSF receptor/histidine kinase</td> | <td>BDSF receptor/histidine kinase</td> | ||
<td><a href="http://parts.igem.org/Part:BBa_K1315007">BBa_K1315007</a></td> | <td><a href="http://parts.igem.org/Part:BBa_K1315007">BBa_K1315007</a></td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td> | + | <td><i>cblD</i></td> |
<td>BCAM0228 inducible promoter</td> | <td>BCAM0228 inducible promoter</td> | ||
<td><a href="http://parts.igem.org/Part:BBa_K1315008">BBa_K1315008</a></td> | <td><a href="http://parts.igem.org/Part:BBa_K1315008">BBa_K1315008</a></td> | ||
Line 189: | Line 211: | ||
<div class="col-12"> | <div class="col-12"> | ||
<div id="ref"> | <div id="ref"> | ||
- | + | ||
- | < | + | <h3>References</h3> |
+ | <p> | ||
<sup>1</sup>Deng, Y.Y. et al. (2010) Appl Environ Microbiol 76, 4675-4683.<br> | <sup>1</sup>Deng, Y.Y. et al. (2010) Appl Environ Microbiol 76, 4675-4683.<br> | ||
<sup>2</sup>McCarthy, Y. et al. (2010) Mol Microbiol 77, 1220-1236.<br> | <sup>2</sup>McCarthy, Y. et al. (2010) Mol Microbiol 77, 1220-1236.<br> | ||
- | <sup>3</sup>Twomey, K.B. et al. (2012) ISME J 6, 939-950.< | + | <sup>3</sup>Twomey, K.B. et al. (2012) ISME J 6, 939-950.</font> |
- | + | </p> | |
+ | |||
+ | |||
</div> | </div> | ||
Line 208: | Line 233: | ||
<div class="btn-group btn-group-justified"> | <div class="btn-group btn-group-justified"> | ||
<div class="btn-group"> | <div class="btn-group"> | ||
- | <a href="PAI-1" class="btn btn-default toLesson">Previous Lesson: PAI-1</a> | + | <a href="PAI-1" class="btn btn-default toLesson">Previous Lesson: PAI-1 Sensor</a> |
</div> | </div> | ||
<div class="btn-group"> | <div class="btn-group"> | ||
Line 214: | Line 239: | ||
</div> | </div> | ||
<div class="btn-group"> | <div class="btn-group"> | ||
- | <a href="dsf" class="btn btn-default toLesson">Next Lesson: DSF</a> | + | <a href="dsf" class="btn btn-default toLesson">Next Lesson: DSF Sensor</a> |
</div> | </div> | ||
</div> | </div> | ||
Line 237: | Line 262: | ||
$('.submenu li').addClass('hide'); | $('.submenu li').addClass('hide'); | ||
} | } | ||
- | |||
- | |||
}); | }); | ||
- | + | $( "#info" ).click( function() { | |
+ | $('#welcomeNote').appendTo("body"); | ||
+ | $("#welcomeNote").modal(); | ||
+ | }); | ||
+ | |||
+ | </script> | ||
</body> | </body> | ||
</html> | </html> | ||
+ | {{:Team:Dundee/Template/welcomeNoteSchool}} |
Latest revision as of 22:21, 17 October 2014
The Burkholderia Diffusible Signalling Factor (BDSF) Sensing System
Initial Planning and Cloning Strategy
Cis-2 fatty acids are used by many bacterial species as signalling molecules to facilitate inter- and intra-species communication and as a method of regulation of gene expression. Burkholderia Diffusible Signalling Factor (BDSF) is a cis-2-dodecenoic acid that is produced exclusively by the pathogenic bacteria of the Burkholderia cepacia complex where it regulates expression of genes involved in virulence1,2. It is structurally similar to, but distinct from, DSF (cis-11-methyl-2-dodecenoic acid) produced by Stenotrophomonas maltophilia.
In B. cenocepacia BDSF activates gene expression through a two component phosphorelay. BCAM0227 is a transmembrane histidine kinase which phosphorylates the response regulator BCAM0228 in the presence of exogenous BDSF. BCAM0228 then binds and activates transcription of cblD, a gene involved in Burkholderia virulence2.
We engineered E. coli to express this signal transduction system for the detection of BDSF (as shown in Fig 1), with a promoter-less gfp gene downstream of the cblD promoter. With this, our sensor will detect any BDSF in its environment via the BCAM0227 receptor and activate GFP production.
Building the BDSF Sensor
Chromosomal DNA from Burkholderia cenocepacia J2315 was kindly gifted to us by Drs Robert Ryan and Shi-Qi An from the Division of Molecular Microbiology in the College of Life Sciences at the University of Dundee. This was used as template for the amplification of BCAM0228 and the cblD promoter region.
The cblD promoter region was cloned into the pSB1C3 plasmid (to give BioBrick BBa_K1315008), and was then subcloned into pBluescript. Promoterless gfp was amplified (using BBa_K562012 as a template), and was cloned into pBluescript downstream of the cblD promoter. The manA promoter-gfp construct was then subcloned into pUniprom. A schematic of our completed construct can be seen below (Fig 2).
A modified version of the BCAM0227 gene which was compatible with BioBrick specifications and standards was synthesised by a third party (Dundee Cell Products). This was subsequently subcloned into the pUniprom vector harbouring PcblD-gfp.
To adhere to the iGEM rules and regulations, it was necessary to remove an illegal EcoRI restriction site present in BCAM0228. The modified gene was cloned into the pSB1C3 plasmid (to give BioBrick BBa_K1315007). BCAM0228 was then subcloned into the pUniprom vector that already harboured PmanA-gfp and BCAM0227. To facilitate immunochemistry, we chose to supply BCAM0227 and BCAM0228 with an influenza virus hemagglutinin (HA) tag which can be detected with commercial antibodies. This tag was added to the C-terminus of each protein.
The plasmid was verified by sequencing.
The completed construct was transformed into MC1061 E. coli as a chassis for our biosensor.
Characterisation
Initially, Western blots were undertaken to test for the sequential production of BCAM0227-HA and BCAM0228-HA. An overnight culture of the cells were lysed and proteins separated by SDS-PAGE in a 12% acrylamide gel. Anti-HA antibodies linked to horseradish peroxidase were used for detection of BCAM0227 and BCAM0228. Fig 3 shows that both of the proteins are being expressed in the system.
With all of the components of the system being produced, we could begin to test for a response to BDSF. To test how the system would respond to BDSF, cells containing the construct were cultured in LB medium and spiked with synthetic BDSF in DMSO at concentrations of 50 µM, which corresponds to the levels found in the sputum of lungs colonised by Burkholderia3 and 500 µM. A western blot with anti-GFP antibodies was performed on the treated cells alongside an un-spiked, BDSF-negative control, and MC1061 cells harbouring the empty pUniprom vector. The results are shown in Fig 4.
These results indicate that GFP production is activated regardless of the presence of BDSF. To test whether our E. coli chassis was responsible for activating GFP production, either via phosphorylation of BCAM0228 or by directly activating the cblD promoter, we made a new construct harbouring PcblD-gfp and BCAM0228-HA, but lacking BCAM0227. Fig 5 shows that GFP was only produced in the presence of BCAM0228-HA. We therefore concluded that GFP output is likely caused by crosstalk by two component regulatory systems within E. coli promoting the phosphorylated state of the BCAM0228 response regulator.
We are continuing to investigate this issue by screening E. coli mutants carrying deletions in genes coding for sensor kinases, taking advantage of the E. coli Keio mutant collection3. Alternatively it may be that BCAM0228 is being phosphorylated by a small molecular weight phosphate donor such acetylphosphate. Acetylphosphate production can be eliminated in a pta-ackA double deletion mutant. Further work is required before the BDSF sensor is fully functional.
The following parts were deposited as BioBricks:
Part | Description | Registry |
---|---|---|
BCAM0228 | BDSF receptor/histidine kinase | BBa_K1315007 |
cblD | BCAM0228 inducible promoter | BBa_K1315008 |
References
1Deng, Y.Y. et al. (2010) Appl Environ Microbiol 76, 4675-4683.
2McCarthy, Y. et al. (2010) Mol Microbiol 77, 1220-1236.
3Twomey, K.B. et al. (2012) ISME J 6, 939-950.