Team:Dundee/Project/pqs

From 2014.igem.org

(Difference between revisions)
 
(214 intermediate revisions not shown)
Line 5: Line 5:
<link href="https://2014.igem.org/Team:Dundee/bootstrap?action=raw&ctype=text/css" rel="stylesheet">
<link href="https://2014.igem.org/Team:Dundee/bootstrap?action=raw&ctype=text/css" rel="stylesheet">
 +
<link href="https://2014.igem.org/Team:Dundee/css/school?action=raw&ctype=text/css" rel="stylesheet">
      
      
<!-- jQuery -->
<!-- jQuery -->
Line 10: Line 11:
<!-- Bootstrap -->
<!-- Bootstrap -->
<script src="https://2014.igem.org/Team:Dundee/js/bootstrap-js?action=raw&ctype=text/javascript"></script>
<script src="https://2014.igem.org/Team:Dundee/js/bootstrap-js?action=raw&ctype=text/javascript"></script>
-
   
+
 
<style>
<style>
-
.jumbotron{
+
.shrink{
-
  height: 300px;
+
max-width = 50%;
-
  background: black;
+
-
  color: white;
+
-
}   
+
-
 
+
-
h1, h2, h3, h4, h5, h6 {
+
-
border-bottom: none;
+
}
}
-
h2{
+
</style>
-
    padding-top: 80px; margin-top: -80px;
+
-
}   
+
-
 
+
-
p{
+
-
text-align: justify;
+
-
}
+
-
 
-
/* Sidebar styles */
 
-
 
-
li.list-group-item {
 
-
  border: none; 
 
-
  font-family: Arial;
 
-
  margin-top:0px;
 
-
  margin-bottom:0px;
 
-
  padding-top: 0px;
 
-
  padding-bottom:0px;
 
-
}
 
-
 
-
 
-
li.list-group-item > a{
 
-
    color: #000000; 
 
-
 
-
}   
 
-
 
-
li.list-group-item:hover > a:hover{
 
-
  border-width:thin;
 
-
  border-left-style:solid;
 
-
  border-left-color: #accfcf;
 
-
  color: #000000;     
 
-
  font-weight:500;
 
-
  border-width:1px;
 
-
  background-color:#ffffff;
 
-
 
 
-
}
 
-
 
-
 
-
 
-
li.list-group-item.active > a,
 
-
li.list-group-item.active > a:hover,
 
-
li.list-group-item.active > a:focus {
 
-
  border-width:3px;
 
-
  border-left-style:solid;
 
-
  border-left-color: #accfcf; 
 
-
  color: #000000; 
 
-
  font-weight: bold;
 
-
  padding: 3px 8px;
 
-
}
 
-
 
-
/*End of sidebar*/
 
-
 
-
 
-
 
-
 
-
 
-
#ref{
 
-
    background: #97c3c3;
 
-
}
 
-
 
-
#btnRow{
 
-
    padding-top: 30px;
 
-
    padding-bottom: 30px;
 
-
 
-
 
-
.toLesson{
 
-
    background: black;
 
-
    color: white;
 
-
}
 
-
 
-
.toClass{
 
-
    background: #97c3c3;
 
-
}
 
-
 
-
.siders{
 
-
width:50%;
 
-
}
 
-
 
-
.system{
 
-
 
-
height: 50%;
 
-
}
 
-
 
-
</style>
 
</head>
</head>
<body data-spy="scroll" data-target="#myScrollspy">
<body data-spy="scroll" data-target="#myScrollspy">
<div class="container">
<div class="container">
     <div class="jumbotron">
     <div class="jumbotron">
-
             <h1>The <i>Pseudomonas</i> Quinolone Signal (PQS) sensing system</h1>
+
             <h1><font size="14">The <i>Pseudomonas</i> Quinolone Signal (PQS) Sensing System</font></h1>
 +
 
             <p class="lead"></p>
             <p class="lead"></p>
     </div>
     </div>
-
     <div class="row-fluid">
+
     <div class="row">
     <div class="col-col-sm-3 col-xs-3 col-md-3" id="nav">
     <div class="col-col-sm-3 col-xs-3 col-md-3" id="nav">
         <ul class="nav list-group affix">
         <ul class="nav list-group affix">
-
             <li class="list-group-item"><a href="#0" class="">Initial planning and cloning strategy</a>
+
             <li class="list-group-item"><a href="#0" class="">Initial Planning and Cloning Strategy</a>
             </li>
             </li>
-
             <li class="list-group-item"><a href="#1" class="">Item 2</a>
+
             <li class="list-group-item"><a href="#1" class="">Building the PQS Sensor</a>
             </li>
             </li>
-
             <li class="list-group-item"><a href="#2" class="">Item 3</a>
+
             <li class="list-group-item"><a href="#2" class="">Characterisation</a>  
-
                <ul class="nav submenu">
+
-
                    <li class="list-group-item hide"><a href="#g3-1" class="">Item a</a>
+
-
                    </li>
+
-
                    <li class="list-group-item hide"><a href="#g3-2" class="">Item b</a>
+
-
                    </li>
+
-
                </ul>
+
             </li>
             </li>
-
            <li class="list-group-item"><a href="#2" class="">Item 4</a>
 
-
                <ul class="nav submenu">
 
-
                    <li class="list-group-item hide"><a href="#3" class="">Item 4a</a>
 
-
                    </li>
 
-
                </ul>
 
         </ul>
         </ul>
     </div>
     </div>
     <div class="col-sm-9 col-xs-9">
     <div class="col-sm-9 col-xs-9">
-
            <h2 id="0">Initial planning and cloning strategy</h2>
+
         
<div class="row">
<div class="row">
<div class="col-xs-12">
<div class="col-xs-12">
-
 
+
  <h2 id="0">Initial Planning and Cloning Strategy</h2>
-
      <a href="#" class= "system pull-left">
+
     
-
            <img data-alt-src="https://static.igem.org/mediawiki/2014/c/ca/PqsR_system.png" src="https://static.igem.org/mediawiki/2014/c/ca/PqsR_system.png" width="200" height="280"/>                               
+
            <img class= "pull-left img-responsive shrink" src="https://static.igem.org/mediawiki/2014/4/46/Pqssss.png"width="288" height="380" />                               
-
     </a> 
+
      
-
 
+
-
 
+
             <p>
             <p>
-
<i>Pseudomonas</i>quinolone signal (2-heptyl-3-hydroxy-4-quinolone) is a quorum-sensing molecule produced by <i>Pseudomonas aeruginosa</i>, which regulates the expression of genes involved in biofilm development and virulence.<sup>1</sup> Expression of these traits is mediated through the LysR-type transcriptional regulator, PqsR. Sequence analysis of PqsR predicts that it is a soluble protein but fractionation of <i>P. aeruginosa</i> has shown that the protein is primarily associated with the inner membrane.<sup> 2</sup> It is not clear whether this is through the interaction with membrane lipids or with an unidentified integral inner membrane protein. In the presence of PQS, PqsR interacts with the promoter region of the <i>pqsABCDE</i> operon, allowing transcription of the downstream genes.<sup>3</sup> We have engineered<i> E. coli</i> to express this signal transduction system for the detection of PQS, with a promoter-less mCherry fused to the <i>pqsA</i> promoter to give a fluorescent output.
+
<i>Pseudomonas</i> quinolone signal (2-heptyl-3-hydroxy-4-quinolone) is a quorum-sensing molecule produced by <i>Pseudomonas aeruginosa</i>, which regulates the expression of genes involved in biofilm development and virulence<sup>1</sup>. Expression of these traits is mediated through the LysR-type transcriptional regulator, <a href="http://parts.igem.org/Part:BBa_K1157001">PqsR</a>. Bioinformatic analysis of the PqsR sequence predicted that it is a soluble protein. Fractionation experiments of <i>P. aeruginosa</i> cells has shown that PqsR is primarily associated with the inner membrane<sup>2</sup>. It is not clear however, whether this is through protein-lipid or protein-protein interactions with membrane lipids or with a yet unidentified integral inner membrane protein, respectively. In the presence of PQS, PqsR interacts with the promoter region of the <a href="http://parts.igem.org/Part:BBa_K1315001"><i>pqsA</i></a> operon, allowing transcription of the downstream genes<sup>3</sup>. We have engineered<i> E. coli</i> to express this signal transduction system for the detection of PQS (as shown in Fig 1), with a promoter-less <a href="http://parts.igem.org/Part:BBa_K562011"> mCherry</a> coding gene fused to the <i>pqsA</i> promoter to give a fluorescent output.
Line 157: Line 58:
             <hr>
             <hr>
-
             <h2 id="1">Building the PQS sensor</h2>
+
             <h2 id="1">Building the PQS Sensor</h2>
           <div class="row">
           <div class="row">
<div class="col-xs-12">
<div class="col-xs-12">
             <p>
             <p>
-
Chromosomal DNA from <i>Pseudomonas Aeruginosa</i> PA01 strain was kindly gifted to us by Robert Ryan and Shi-Qi An from The Division of Molecular Microbiology in the College of Life sciences at the University of Dundee. This was used as a template for the amplification of the <i>pqsA</i> promoter.  
+
Chromosomal DNA from <i>Pseudomonas aeruginosa</i> PA01 strain was kindly gifted to us by Drs Robert Ryan and Shi-Qi An from the Division of Molecular Microbiology in the College of Life sciences at the University of Dundee. This was used as a template for the amplification of the <i>pqsA</i> promoter gene.  
 +
<br>
 +
<br>
-
The <i>pqsA</i> promoter region was cloned into the pSB1C3 plasmid (to give Biobrick (<a href="http://parts.igem.org/Part:BBa_K1315001">BBa_K1315001</a>), and was then subcloned into pBluescript. Promoterless mCherry was amplified using BBa K562011 as a template and was cloned into pBluescript downstream of the <i>pqsABCDE</i> promoter. The P<i>pqsA</i>-mCherry construct was then subcloned into pUniprom.  
+
The <i>pqsA</i> promoter region was cloned into the pSB1C3 plasmid (BioBrick <a href="http://parts.igem.org/Part:BBa_K1315001">BBa_K1315001</a>), and was then subcloned into pBluescript. Promoterless mCherry was amplified (template used: <a href="http://parts.igem.org/Part:BBa_K562011"> BBa_K562012</a>), and was cloned into pBluescript downstream of the <i>pqsA</i> promoter. The P<i><sub>pqsA</sub></i>-mCherry construct was then subcloned into pUniprom. A schematic of our completed construct can be seen in Fig 2.  
-
 
+
<br>
-
The pqsR gene (present in <a href="http://parts.igem.org/Part:BBa_K1315001">BBa_K1315001</a>) which was designed and cloned by Lin Ang Chieh from iGEM13-NTU-Taida was used as a template for the amplification of pqsR with an  
+
<br>
-
influenza virus haemagglutinin (HA) tag coding sequence, which can be detected with commercial antibodies. This tag was added to the C-terminus of the protein to facilitate immunohistochemistry.  
+
The <i>pqsR</i> gene (present in <a href="http://parts.igem.org/Part:BBa_K1157001">BBa_K1315001</a>) which was designed and cloned by Lin Ang Chieh from iGEM13-NTU-Taida was used as a template for the amplification of <i>pqsR</i> with an  
 +
influenza virus haemagglutinin (HA) tag coding sequence, which can be detected by commercially available antibodies. The HA-tag was fused to the C-terminus of the protein to allow visualisation by immunohistochemistry.  
</p>
</p>
</div>
</div>
</div>
</div>
           <div class="row">
           <div class="row">
-
<div class="col-xs-12">
+
<div class="col-xs-2">
-
 
+
</div>
-
      <a href="#" class="center">
+
<div class="col-xs-8">
-
            <img  data-alt-src="hhttps://static.igem.org/mediawiki/2014/8/83/PqsR_plasmid.png" src="https://static.igem.org/mediawiki/2014/8/83/PqsR_plasmid.png" width="300" height="70" />                             
+
-
    </a>
+
 +
<img  class= "img-responsive" src="https://static.igem.org/mediawiki/2014/8/84/Pqs1boold.png"width="600" height="152"  /> 
 +
                           
 +
</div>
 +
<div class="col-xs-2">
</div>
</div>
</div>
</div>
-
 
+
<br>
           <div class="row">
           <div class="row">
<div class="col-xs-12">
<div class="col-xs-12">
Line 194: Line 100:
<div class="col-xs-12">
<div class="col-xs-12">
             <p>
             <p>
-
Initially, western blots were undertaken to test for the production of PqsR-HA. We transformed our plasmid encoding PqsR-HA into <i>E. coli </i>strain MC1061 and blotted for recombinant protein production. An overnight culture of the cells was lysed and proteins separated by SDS-PAGE in a 12% acrylamide gel. Anti-HA antibodies linked to horseradish peroxidase were used for detection of PqsR. Fig 3A shows the expression of PqsR within our system.  
+
Initially, western blots were undertaken to test for the production of PqsR-HA. We transformed our plasmid encoding PqsR-HA into <i>E. coli </i>strain MC1061 and blotted for recombinantely expressed protein. An overnight culture of the cells was lysed and proteins separated by SDS-PAGE in a 12% acrylamide gel. Anti-HA antibodies linked to horseradish peroxidase were used for detection of PqsR. Fig 3A shows the expression of PqsR within our system.  
-
</p>
+
-
 
+
</div>
</div>
</div>
</div>
           <div class="row">
           <div class="row">
-
<div class="col-xs-12">
+
<div class="col-xs-1">
-
 
+
</div>
-
      <a href="#" class="center">
+
<div class="col-xs-10">
-
            <img  data-alt-src="https://static.igem.org/mediawiki/2014/4/42/PqsR_HA_blot.png"
+
-
src="https://static.igem.org/mediawiki/2014/4/42/PqsR_HA_blot.png" width="200" height="160"/>                             
+
-
    </a>  
+
 +
<img class= "img-responsive" src="https://static.igem.org/mediawiki/2014/8/8f/3pqs3.png"/>                               
 +
</div>
 +
<div class="col-xs-1">
</div>
</div>
</div>
</div>
Line 214: Line 118:
           <div class="row">
           <div class="row">
<div class="col-xs-12">
<div class="col-xs-12">
 +
<p>
<p>
-
As shown in Fig 3, successful production of PqsR-HA (expected mass 38 kDa) was observed. With the PqsR regulator being produced we could begin to test for a response to PQS. To test how the system would respond to PQS, cells containing the construct were cultured in LB medium and spiked with synthetic PQS in DMSO at concentrations of 50μM and 500μM. A western blot with anti-mCherry antibodies was performed on the treated cells alongside an un-spiked, PQS-negative control. Two further controls - MC1061 cells harbouring the empty pUniprom vector (mCherry negative control) or BBa K562011 (mCherry positive control) were also included.
+
<br>
 +
<br>
 +
 
 +
As shown in Fig 3, successful production of PqsR-HA (expected mass 38 kDa) was observed. With the PqsR regulator being produced we could begin to test for a response to PQS. To test how the system would respond to PQS, cells containing the construct were cultured in LB medium and spiked with synthetic PQS (in 100% DMSO) at finals concentrations of 50 and 500 μM. A western blot with anti-mCherry antibodies was performed on the treated cells alongside a control (DMSO). Two further controls - MC1061 cells harbouring the empty pUniprom vector (mCherry negative control) and <a href="http://parts.igem.org/Part:BBa_K562011"> BBa_K562011</a> (mCherry positive control) were also included.
</p>
</p>
Line 222: Line 130:
<div class="row">
<div class="row">
-
<div class="col-xs-12">
+
<div class="col-xs-1">
 +
</div>
 +
<div class="col-xs-10">
 +
 
 +
      <img  class="center img-responsive" src="https://static.igem.org/mediawiki/2014/e/ec/4pqs4.png" />                             
-
      <a href="#" class="center">
+
</div>
-
            <img  data-alt-src="https://static.igem.org/mediawiki/2014/9/9d/MCherry_control_blot.png"
+
<div class="col-xs-1">
-
src="https://static.igem.org/mediawiki/2014/9/9d/MCherry_control_blot.png" width="200" height="280"/>                             
+
-
    </a>  
+
</div>
</div>
</div>
</div>
Line 235: Line 145:
<div class="col-xs-12">
<div class="col-xs-12">
<p>
<p>
-
As shown in Fig 4 incubation of cells with synthetic PQS, did not induce expression of mCherry. It is not clear why the biosensor did not respond. One possibility we considered is that the PqsR is not correctly localized to the membrane in the <i>E. coli</i> chassis. We therefore fractionated <i>E. coli</i> cells containing PqsR-HA into soluble and membrane fractions. However, as shown in Fig 5, all of the detectable PqsR-HA was found in the membranes as it is in the native organism.
+
<br>
 +
<br>
 +
As shown in Fig 4, incubation of cells with synthetic PQS, did not induce expression of mCherry. It is not clear why the biosensor did not respond. One possibility we considered is that PqsR is not correctly localized to the membrane in <i>E. coli</i>. We therefore fractionated <i>E. coli</i> cells containing PqsR-HA into soluble and membrane fractions. However, as shown in Fig 5, all of the detectable PqsR-HA was found in the membranes as it is in the native organism.
</p>
</p>
-
 
+
<br>
 +
<br>
</div>
</div>
</div>
</div>
           <div class="row">
           <div class="row">
-
<div class="col-xs-12">
+
<div class="col-xs-1">
 +
</div>
 +
<div class="col-xs-10">
 +
 
 +
<img  class="center img-responsive" src="https://static.igem.org/mediawiki/2014/a/a3/5pqs5.png"/>                             
-
      <a href="#" class="center">
+
</div>
-
            <img  data-alt-src="https://static.igem.org/mediawiki/2014/8/81/PqsR_membrane_blot.png"
+
<div class="col-xs-1">
-
src="https://static.igem.org/mediawiki/2014/8/81/PqsR_membrane_blot.png"width="200" height="280" />                             
+
-
    </a>  
+
</div>
</div>
</div>
</div>
Line 255: Line 170:
<div class="col-xs-12">
<div class="col-xs-12">
<p>
<p>
-
We discussed the failure of the PQS biosensor to respond extensively with the modelling team (include link). The feedback we received was that increasing the number of promoters (by at least 10-fold) should allow for sufficient detection of mCherry. We are in the process of building this new expression system. </p>
+
<br>
 +
<br>
 +
We discussed the results of the PQS biosensor extensively with the
 +
<a href="https://2014.igem.org/Team:Dundee/Modeling/pqs">modelling team</a>. They suggested increasing the number of promoters (by at least 10-fold). This should allow for sufficient production of mCherry, which can then be detected. We are in the process of building this new expression system.  
 +
</p>
 +
<br>
 +
<br>
 +
The following parts were deposited as BioBricks:
 +
<br>
 +
<br>
Line 269: Line 193:
     <tbody>
     <tbody>
         <tr>
         <tr>
-
             <td>PqsA</td>
+
             <td><i>pqsA</i></td>
             <td>Promoter</td>
             <td>Promoter</td>
             <td><a href="http://parts.igem.org/Part:BBa_K1315001">BBa_K1315001</a></td>
             <td><a href="http://parts.igem.org/Part:BBa_K1315001">BBa_K1315001</a></td>
Line 278: Line 202:
</div>
</div>
-
 
+
<div class="row">
-
<!-- END OF PQS-->
+
<div class="col-12">
 +
<div id="ref">
 +
            <h3>References</h3> 
 +
<p>
 +
<sup>1</sup>Reen, F.J. et al. (2011) FEMS Microbiol Ecol 77, 413-428. <br>
 +
<sup>2</sup>Cao, H. et al. (2001) Proc Natl Acad Sci USA 98, 14613–14618.<br>
 +
<sup>3</sup>Dekimpe, V. et al. (2009) Microbiology 155, 712-723.</font>
 +
  </p>
 +
</div>       
 +
      </div>
 +
    </div>
 +
</div>
 +
</div>
<!--END OF CONTENT-->
<!--END OF CONTENT-->
Line 285: Line 221:
</div>
</div>
-
<div id="ref">
 
-
            <h3>References</h3>   
 
-
</div>       
 
-
      </div>
 
-
    </div>
 
     <div class="row" id="btnRow">
     <div class="row" id="btnRow">
       <div class="btn-group btn-group-justified">
       <div class="btn-group btn-group-justified">
   <div class="btn-group">
   <div class="btn-group">
-
<a href="" class="btn btn-default toLesson">Previous lesson</a>   
+
<a href="Aims" class="btn btn-default toLesson">Previous Lesson: The Lung Ranger</a>   
   </div>
   </div>
   <div class="btn-group">
   <div class="btn-group">
Line 300: Line 231:
   </div>
   </div>
   <div class="btn-group">
   <div class="btn-group">
-
     <a href="bdsf" class="btn btn-default toLesson">BDSF</a>
+
     <a href="PAI-1" class="btn btn-default toLesson">Next Lesson: PAI-1 Sensor</a>
   </div>
   </div>
</div>
</div>
Line 322: Line 253:
       $('.submenu li').addClass('hide');
       $('.submenu li').addClass('hide');
     }
     }
-
     
 
-
   
 
   });
   });
 +
 +
        $( "#info" ).click( function() {
 +
        $('#welcomeNote').appendTo("body");
 +
  $("#welcomeNote").modal();
 +
});
</script>
</script>
</body>
</body>
</html>
</html>
 +
{{:Team:Dundee/Template/welcomeNoteSchool}}

Latest revision as of 22:20, 17 October 2014

Dundee 2014

The Pseudomonas Quinolone Signal (PQS) Sensing System

Initial Planning and Cloning Strategy

Pseudomonas quinolone signal (2-heptyl-3-hydroxy-4-quinolone) is a quorum-sensing molecule produced by Pseudomonas aeruginosa, which regulates the expression of genes involved in biofilm development and virulence1. Expression of these traits is mediated through the LysR-type transcriptional regulator, PqsR. Bioinformatic analysis of the PqsR sequence predicted that it is a soluble protein. Fractionation experiments of P. aeruginosa cells has shown that PqsR is primarily associated with the inner membrane2. It is not clear however, whether this is through protein-lipid or protein-protein interactions with membrane lipids or with a yet unidentified integral inner membrane protein, respectively. In the presence of PQS, PqsR interacts with the promoter region of the pqsA operon, allowing transcription of the downstream genes3. We have engineered E. coli to express this signal transduction system for the detection of PQS (as shown in Fig 1), with a promoter-less mCherry coding gene fused to the pqsA promoter to give a fluorescent output.


Building the PQS Sensor

Chromosomal DNA from Pseudomonas aeruginosa PA01 strain was kindly gifted to us by Drs Robert Ryan and Shi-Qi An from the Division of Molecular Microbiology in the College of Life sciences at the University of Dundee. This was used as a template for the amplification of the pqsA promoter gene.

The pqsA promoter region was cloned into the pSB1C3 plasmid (BioBrick BBa_K1315001), and was then subcloned into pBluescript. Promoterless mCherry was amplified (template used: BBa_K562012), and was cloned into pBluescript downstream of the pqsA promoter. The PpqsA-mCherry construct was then subcloned into pUniprom. A schematic of our completed construct can be seen in Fig 2.

The pqsR gene (present in BBa_K1315001) which was designed and cloned by Lin Ang Chieh from iGEM13-NTU-Taida was used as a template for the amplification of pqsR with an influenza virus haemagglutinin (HA) tag coding sequence, which can be detected by commercially available antibodies. The HA-tag was fused to the C-terminus of the protein to allow visualisation by immunohistochemistry.


The plasmid was verified by sequencing.

The completed construct was transformed into E. coli strain MC1061 as a chassis for our biosensor.

Characterisation

Initially, western blots were undertaken to test for the production of PqsR-HA. We transformed our plasmid encoding PqsR-HA into E. coli strain MC1061 and blotted for recombinantely expressed protein. An overnight culture of the cells was lysed and proteins separated by SDS-PAGE in a 12% acrylamide gel. Anti-HA antibodies linked to horseradish peroxidase were used for detection of PqsR. Fig 3A shows the expression of PqsR within our system.



As shown in Fig 3, successful production of PqsR-HA (expected mass 38 kDa) was observed. With the PqsR regulator being produced we could begin to test for a response to PQS. To test how the system would respond to PQS, cells containing the construct were cultured in LB medium and spiked with synthetic PQS (in 100% DMSO) at finals concentrations of 50 and 500 μM. A western blot with anti-mCherry antibodies was performed on the treated cells alongside a control (DMSO). Two further controls - MC1061 cells harbouring the empty pUniprom vector (mCherry negative control) and BBa_K562011 (mCherry positive control) were also included.



As shown in Fig 4, incubation of cells with synthetic PQS, did not induce expression of mCherry. It is not clear why the biosensor did not respond. One possibility we considered is that PqsR is not correctly localized to the membrane in E. coli. We therefore fractionated E. coli cells containing PqsR-HA into soluble and membrane fractions. However, as shown in Fig 5, all of the detectable PqsR-HA was found in the membranes as it is in the native organism.





We discussed the results of the PQS biosensor extensively with the modelling team. They suggested increasing the number of promoters (by at least 10-fold). This should allow for sufficient production of mCherry, which can then be detected. We are in the process of building this new expression system.



The following parts were deposited as BioBricks:

Part Description Registry
pqsA Promoter BBa_K1315001

References

1Reen, F.J. et al. (2011) FEMS Microbiol Ecol 77, 413-428.
2Cao, H. et al. (2001) Proc Natl Acad Sci USA 98, 14613–14618.
3Dekimpe, V. et al. (2009) Microbiology 155, 712-723.