Team:Bielefeld-CeBiTec/Results/CO2-fixation/RuBisCO

From 2014.igem.org

(Difference between revisions)
Line 72: Line 72:
   <p>
   <p>
-
The Ribulose 1,5-bisphosphate Carboxylase Oxygenase (RuBisCO) is the most important enzyme in the Calvin cycle. It binds gaseous carbon dioxide to ribulose-1,5-bisphosphate (Ru-BP) generating two molecules of 3-phosphoglycerate (3-PGA). Therefore it is responsible for the fixation of carbon dioxide. 3-PGA is further converted in the Calvin cycle to glycerinaldehyde-3-phosphate. This is an essential intermediate in the central metabolism, as it plays a central role in glycolysis and gluconeogenesis. RuBisCO enzymes are chracterised as enzymes with slow reaction rates with a k<sub>cat</sub> of approximately 20. Furthermore they catalyse a side reaction with oxygen instead of of carbon dioxide, deteriorating the catalytic efficienc.
+
The <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/CO2-fixation/CalvinCycle" target="_blank">Ribulose 1,5-bisphosphate Carboxylase Oxygenase (RuBisCO)</a>) is the most important enzyme in the <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/CO2-fixation/CalvinCycle" target="_blank">Calvin cycle</a>). It binds gaseous carbon dioxide to ribulose-1,5-bisphosphate (Ru-BP) generating two molecules of 3-phosphoglycerate (3-PGA). Therefore it is responsible for the fixation of carbon dioxide. 3-PGA is further converted in the Calvin cycle to glycerinaldehyde-3-phosphate. This is an essential intermediate in the central metabolism, as it plays a central role in glycolysis and gluconeogenesis. RuBisCO enzymes are chracterised as enzymes with slow reaction rates with a k<sub>cat</sub> of approximately 20. Furthermore they catalyse a side reaction with oxygen instead of of carbon dioxide, deteriorating the catalytic efficiency. The inclusion of the RuBisCO in a <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/CO2-fixation/Carboxysome" target="_blank">carboxysome</a>, would significantly improve the efficiency of carbon fixation.  
<center>
<center>

Revision as of 16:13, 17 October 2014



Module II - Carbon Dioxide (CO2) Fixation

Theory

The Ribulose 1,5-bisphosphate Carboxylase Oxygenase (RuBisCO)) is the most important enzyme in the Calvin cycle). It binds gaseous carbon dioxide to ribulose-1,5-bisphosphate (Ru-BP) generating two molecules of 3-phosphoglycerate (3-PGA). Therefore it is responsible for the fixation of carbon dioxide. 3-PGA is further converted in the Calvin cycle to glycerinaldehyde-3-phosphate. This is an essential intermediate in the central metabolism, as it plays a central role in glycolysis and gluconeogenesis. RuBisCO enzymes are chracterised as enzymes with slow reaction rates with a kcat of approximately 20. Furthermore they catalyse a side reaction with oxygen instead of of carbon dioxide, deteriorating the catalytic efficiency. The inclusion of the RuBisCO in a carboxysome, would significantly improve the efficiency of carbon fixation.


Figure1: Pathway of the D-xylose consumption in E. coli for hte fixation of carbon dioxide by the RuBisCO from Halothiobacillus neapolitnaus. For this approach the substrate ribulose 1,5-bisphosphate needs to be accumulated in the cell. This is realzied be the PrkA from Snyechoccous elongatus.

Thin Layer Chromatography

Cultivation

Bild Carbonat-Gleichgewicht
Bild Reaktor Schema
Bild Reaktor
Kalbriergerade
Kultivierung