Team:Cornell/project
From 2014.igem.org
Line 14: | Line 14: | ||
</div> | </div> | ||
<div class="col-md-7"> | <div class="col-md-7"> | ||
- | <h2 class="featurette-heading">Project <span class="text-muted">Lead it Go</span></h2> | + | <h2 class="featurette-heading" style="margin-top: 22px; margin-bottom: 5px;">Project <span class="text-muted">Lead it Go</span></h2> |
<p> | <p> | ||
Heavy metal pollution in water is one of the most significant public health risks around the world. Pollutants including lead, mercury, and nickel can enter water supplies through a number of methods including improper disposal of waste, industrial manufacturing, and mining. When solubilized, they have the ability to cause environmental and health problems. These heavy metals are acutely toxic at high concentrations and carcinogenic with long-term exposure even at low concentrations. Methods exist to remove heavy metals from water supplies, but these methods create other hazardous wastes and are much more effective in waters with high concentrations of metals. Due to the high affinity of binding proteins, a biological based filtration system can be more effective at treating water contaminated with lower concentrations of heavy metals without generating large volumes of toxic waste.<br><br> | Heavy metal pollution in water is one of the most significant public health risks around the world. Pollutants including lead, mercury, and nickel can enter water supplies through a number of methods including improper disposal of waste, industrial manufacturing, and mining. When solubilized, they have the ability to cause environmental and health problems. These heavy metals are acutely toxic at high concentrations and carcinogenic with long-term exposure even at low concentrations. Methods exist to remove heavy metals from water supplies, but these methods create other hazardous wastes and are much more effective in waters with high concentrations of metals. Due to the high affinity of binding proteins, a biological based filtration system can be more effective at treating water contaminated with lower concentrations of heavy metals without generating large volumes of toxic waste.<br><br> | ||
- | Our team plans to combat heavy metal pollution problems by improving existing biological filtration methods and developing a novel system for lead remediation. To this end, we are engineering bacterial strains that will simultaneously express heavy metal transport proteins and metallothioneins, a class of low-molecular weight, cysteine-rich proteins with high binding affinities for various heavy metals. The heavy metal transport proteins are specific to certain metals and will cause rapid intake of these ions. The metallothioneins will then bind to these ions intracellularly and permanently sequester them. After filtration, the respective heavy metals can be isolated by recollecting the cells from the filter. <br><br> | + | Our team plans to combat heavy metal pollution problems by improving existing biological filtration methods and developing a novel system for lead remediation. To this end, we are engineering bacterial strains that will simultaneously express heavy metal transport proteins and metallothioneins, a class of low-molecular weight, cysteine-rich proteins with high binding affinities for various heavy metals. The heavy metal transport proteins are specific to certain metals and will cause rapid intake of these ions. The metallothioneins will then bind to these ions intracellularly and permanently sequester them. After filtration, the respective heavy metals can be isolated by recollecting the cells from the filter. <br><br>In addition to developing these strains, our dry lab team has designed a hollow fiber reactor with several chambers, each designed to collect a specific metal. The filter system was then assembled into a compact and transportable prototype. We plan to test the efficacy of different combinations of filters in series using samples of contaminated waters near a local brownfield site. |
- | In addition to developing these strains, our dry lab team has designed a hollow fiber reactor with several chambers, each designed to collect a specific metal. The filter system was then assembled into a compact and transportable prototype. We plan to test the efficacy of different combinations of filters in series using samples of contaminated waters near a local brownfield site. | + | |
</p> | </p> | ||
</div> | </div> |
Revision as of 05:00, 16 October 2014
Project Lead it Go
Heavy metal pollution in water is one of the most significant public health risks around the world. Pollutants including lead, mercury, and nickel can enter water supplies through a number of methods including improper disposal of waste, industrial manufacturing, and mining. When solubilized, they have the ability to cause environmental and health problems. These heavy metals are acutely toxic at high concentrations and carcinogenic with long-term exposure even at low concentrations. Methods exist to remove heavy metals from water supplies, but these methods create other hazardous wastes and are much more effective in waters with high concentrations of metals. Due to the high affinity of binding proteins, a biological based filtration system can be more effective at treating water contaminated with lower concentrations of heavy metals without generating large volumes of toxic waste.
Our team plans to combat heavy metal pollution problems by improving existing biological filtration methods and developing a novel system for lead remediation. To this end, we are engineering bacterial strains that will simultaneously express heavy metal transport proteins and metallothioneins, a class of low-molecular weight, cysteine-rich proteins with high binding affinities for various heavy metals. The heavy metal transport proteins are specific to certain metals and will cause rapid intake of these ions. The metallothioneins will then bind to these ions intracellularly and permanently sequester them. After filtration, the respective heavy metals can be isolated by recollecting the cells from the filter.
In addition to developing these strains, our dry lab team has designed a hollow fiber reactor with several chambers, each designed to collect a specific metal. The filter system was then assembled into a compact and transportable prototype. We plan to test the efficacy of different combinations of filters in series using samples of contaminated waters near a local brownfield site.