Team:Dundee/Modeling/introduction

From 2014.igem.org

(Difference between revisions)
Line 18: Line 18:
     <div class="jumbotron">
     <div class="jumbotron">
               <h1>Introduction
               <h1>Introduction
-
            <p class="lead">What We Did</p>
 
     </div>
     </div>
         <div class="row">
         <div class="row">
Line 49: Line 48:
</div>
</div>
              
              
-
<div class="row">
+
          <div class="row">
-
<div class="col-12">
+
<div class="col-xs-12">
-
 
+
<p>
 +
Each modelling technique  allows for the investigation of processes at different levels  of observation. ODE allows for prediction as the  population level. SSA  takes account of low molecule numbers (intrinsic noise) and allows for single cell comparison and a better understanding o sub-population behaviour.  The NetLogo simulation tool affords single cell resolution and provides the most accessible visual representation of the biochemistry under study.
 +
</p>

Revision as of 16:51, 15 October 2014

Dundee 2014

Introduction

In order to help analyze, construct and optimise the biochemical pathways in The Lung Ranger, we used a variety of mathematical tools to create algorithms and simulations. This allowed us to accelerate the development and testing of various hypotheses.

Methodology
As shown in below each of the approaches; ordinary differential equations (ODEs), stochastic simulation algorithm (SSA) and NetLogo, provided a different understanding of each system.

Each modelling technique allows for the investigation of processes at different levels of observation. ODE allows for prediction as the population level. SSA takes account of low molecule numbers (intrinsic noise) and allows for single cell comparison and a better understanding o sub-population behaviour. The NetLogo simulation tool affords single cell resolution and provides the most accessible visual representation of the biochemistry under study.