Team:ETH Zurich/modeling/qs

From 2014.igem.org

(Difference between revisions)
m
m (Alternate Design)
Line 274: Line 274:
;'''Assumption 1'''
;'''Assumption 1'''
-
:The induction of the promoter $P_A$ by A is supposed to follow an Hill function.
+
:The induction of the promoter P<sub>A</sub> by A is supposed to follow an Hill function.
;'''Assumption 2'''
;'''Assumption 2'''
Line 280: Line 280:
$$\begin{align}
$$\begin{align}
-
\frac{d[A]}{dt} &= \alpha_A - \beta_{A} [A] \\
+
\frac{d[A]}{dt} &= \alpha_A - d_{A} [A] \\
-
\frac{d[Enz]}{dt} &= \alpha_{Enz} \frac{[A]^n}{K_{A}^n + [A]^n} - \beta_{Enz} [Enz] \\
+
\frac{d[Enz]}{dt} &= \alpha_{Enz} \frac{[A]^n}{K_{A}^n + [A]^n} - d_{Enz} [Enz] \\
-
\frac{d[B]}{dt} &= \alpha_B \frac{[Enz] [A]}{K_d + [A]} - \beta_{B} [B]  
+
\frac{d[B]}{dt} &= \alpha_B \frac{[Enz] [A]}{K_d + [A]} - d_{B} [B]  
\end{align}$$
\end{align}$$
Line 297: Line 297:
$$
$$
\begin{align*}
\begin{align*}
-
\frac{d[B]}{dt} &= \alpha_B - \beta_{B} [B] \\
+
\frac{d[B]}{dt} &= \alpha_B - d_{B} [B] \\
-
\frac{d[Bxb1]}{dt} &= \alpha_{Enz} \frac{[B]^n}{K_{B}^n + [B]^n} - \beta_{Bxb1} [Bxb1]
+
\frac{d[Bxb1]}{dt} &= \alpha_{Enz} \frac{[B]^n}{K_{B}^n + [B]^n} - d_{Bxb1} [Bxb1]
\end{align*}
\end{align*}
$$
$$
Line 305: Line 305:
:Here, output<sub>logic</sub> is the output of the XOR logic gate, factorized in one term for simplicty's sake. For more information on this function, see the [https://2014.igem.org/Team:ETH_Zurich/modeling/xor XOR gate modeling page].
:Here, output<sub>logic</sub> is the output of the XOR logic gate, factorized in one term for simplicty's sake. For more information on this function, see the [https://2014.igem.org/Team:ETH_Zurich/modeling/xor XOR gate modeling page].
$$\begin{align*}
$$\begin{align*}
-
\frac{d[Enz]}{dt} &= output_{logic} - \beta_{Enz} [Enz] \\
+
\frac{d[Enz]}{dt} &= output_{logic} - d_{Enz} [Enz] \\
-
\frac{d[B]}{dt} &= \alpha_B \frac{[Enz] [A]}{K_d + [A]} - \beta_{B} [B]
+
\frac{d[B]}{dt} &= \alpha_B \frac{[Enz] [A]}{K_d + [A]} - d_{B} [B]
\end{align*}
\end{align*}
$$
$$

Revision as of 13:54, 15 October 2014

iGEM ETH Zurich 2014