Team:Bielefeld-CeBiTec/Project/rMFC/MeasurementSystem

From 2014.igem.org

(Difference between revisions)
Line 70: Line 70:
<div class="element" style="margin:10px 10px 10px 10px; padding:10px 10px 10px 10px">  
<div class="element" style="margin:10px 10px 10px 10px; padding:10px 10px 10px 10px">  
   <div id="text">
   <div id="text">
-
  <h6>Measurement system</h6>
+
    <h6>Introduction to electrochemistry</h6>   
-
  <br><br>
+
-
    <center><h2>Introduction to electrochemistry</h2></center>   
+
   <p>
   <p>
The investigation of electroactive microorganisms affords an appropriate measurement system. To perform highly sensitive measurements we used a Potentiostat. For the understanding of the mode of operation of a Potentiostat it is necessary to define a few basic principles of electrochemistry. The following definitions come from (<a href="#harnisch2012">Harnisch, F. & Freguia, 2012</a>):
The investigation of electroactive microorganisms affords an appropriate measurement system. To perform highly sensitive measurements we used a Potentiostat. For the understanding of the mode of operation of a Potentiostat it is necessary to define a few basic principles of electrochemistry. The following definitions come from (<a href="#harnisch2012">Harnisch, F. & Freguia, 2012</a>):
 +
<ul>
<li><i>Anode:</i><br>
<li><i>Anode:</i><br>
       The electrode where an oxidation takes place.</li>
       The electrode where an oxidation takes place.</li>
Line 113: Line 112:
<li><i>Scan rate [mV s<sup>-1</sup>]:</i><br>
<li><i>Scan rate [mV s<sup>-1</sup>]:</i><br>
       The speed of potential change per unit of time in a voltammetric experiment.</li>
       The speed of potential change per unit of time in a voltammetric experiment.</li>
-
<br>
+
</ul>
-
 
+
-
<br><br><br>
+
-
    <center><h2>The Potentiostat</h2></center>
+
-
 
+
 +
</div>
 +
</div>
 +
<div class="element" style="margin:10px 10px 10px 10px; padding:10px 10px 10px 10px">
 +
  <div id="text">
 +
    <h6>The Potentiostat</h6>
<center>
<center>
Line 126: Line 126:
       <font size="2" style="text-align:left;"><b>Figure 1</b>: Principle of the circuit for potentiostatic measurements with a four electrode set up.</font>
       <font size="2" style="text-align:left;"><b>Figure 1</b>: Principle of the circuit for potentiostatic measurements with a four electrode set up.</font>
</center>   
</center>   
 +
 +
</div>
 +
</div>
 +
 +
<div class="element" style="margin:10px 10px 10px 10px; padding:10px 10px 10px 10px">
 +
  <div id="text">
 +
<h6>Cyclic voltammetry</h6>
 +
-
<br><br><br>
+
</div>
-
    <center><h2>Cyclic voltammetry</h2></center>
+
</div>
-
<br><br><br>
+
<div class="element" style="margin:10px 10px 10px 10px; padding:10px 10px 10px 10px">  
-
    <center><h2>Chronoamperometry</h2></center>
+
  <div id="text">
 +
<h6>Chronoamperometry</h6>
</p>
</p>

Revision as of 09:43, 15 October 2014


rMFC

Introduction to electrochemistry

The investigation of electroactive microorganisms affords an appropriate measurement system. To perform highly sensitive measurements we used a Potentiostat. For the understanding of the mode of operation of a Potentiostat it is necessary to define a few basic principles of electrochemistry. The following definitions come from (Harnisch, F. & Freguia, 2012):

  • Anode:
    The electrode where an oxidation takes place.

  • Cathode:
    The electrode where a reduction takes place.

  • Current:
    The flow of electric charge.

  • Capacitive Current:
    The current related to the change in the electrode surface charge, not related to an oxidation/ reduction reaction.

  • Faradaic Current:
    The current generated from the oxidation (positive current) of reduction (negative current) of chemical spezies.

  • Charge q [C]:
    Cumulative current flow (1C= 1A x 1s). Values can be determined by the integration of current-time curves.

  • Formal Potential Ef [V]:
    Replaces the standard potential when the activities of the species involved and of the side-reactions are unknown or too complex. It is the favoured value for reactions that take place in a biological environment.

  • Peak Current:
    The maximum current at the working electrode in a voltammetric measurement.

  • Peak Potential:
    The potential of the working electrode at which the peak current in a voltammetric measurement is obtained.

  • Potentiostat:
    An electronic amplifier that controls the potential drop between an electrode (the WE) and the electrolyte solution; it usally constitutes a reference electode (RE) as a sensing component and a counter electrode (CE) for balancing the current flow.

  • Reference electrode (RE):
    A non-polarizable (stable) electrode with a fixed potential that sets or measures the potential of the WE.

  • Working electrode:
    An electrode at which a given electrochemical reaction of interest is examined; its potential is controlled versus the RE in a three-electrode system.

  • Scan rate [mV s-1]:
    The speed of potential change per unit of time in a voltammetric experiment.
The Potentiostat

Figure 1: Principle of the circuit for potentiostatic measurements with a four electrode set up.
Cyclic voltammetry
Chronoamperometry

References
  • Harnisch, F. & Freguia, S., 2012. A Basic Tutorial on Cyclic Voltammetry for the investigation of Electroactive Microbial Biofilms. In: Chemistry – An Asian Journal, 7 (3), pp. 466–475.