Team:Bielefeld-CeBiTec/Project/rMFC

From 2014.igem.org

(Difference between revisions)
 
(58 intermediate revisions not shown)
Line 1: Line 1:
{{Template:Team:Bielefeld-CeBiTec/igem.css}}
{{Template:Team:Bielefeld-CeBiTec/igem.css}}
{{Template:Team:Bielefeld-CeBiTec/main.css}}
{{Template:Team:Bielefeld-CeBiTec/main.css}}
-
{{Template:Team:Bielefeld-CeBiTec/Banner_project.css}}
+
{{Template:Team:Bielefeld-CeBiTec/Banner_team.css}}
-
 
+
{{Template:Team:Bielefeld-CeBiTec/Banner_project.tmpl}}
 +
<html>
 +
<style>
 +
flag.flag_element2{
 +
      background-image:url("https://static.igem.org/mediawiki/2014/0/00/Bielefeld-CeBiTec_14-06-07_Ribbon_middle_rev.png");
 +
      background-size: 100% 100%;
 +
      width: auto;
 +
      height:40px;
 +
      padding-left: 10px;
 +
      padding-right: 10px;
 +
      float:left;
 +
}
 +
</style>
<html>
<html>
<h1> rMFC </h1>
<h1> rMFC </h1>
 +
</html>
 +
{{Template:Team:Bielefeld-CeBiTec/prj_rmfc.tmpl}}
 +
<html>
-
<div class="element" style="margin:10px 10px 10px 10px; padding:10px 10px 10px 10px">  
+
<div class="element">  
   <div id="text">
   <div id="text">
-
     <p>In the first module we aim to identify possible mediators that are capable for electron transport. We want to use electricity to chemically reduce these mediators and transport them into the cells. One important requirement for a suitable mediator is that its reduction potential is high enough to restore reduction equivalents, like NAD(P)H (nicotinamide adenine dinucleotide (phosphate)). These reduction equivalents enter the respiratory chain where ATP (adenosine triphosphate) is produced which will be used in the <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/CO2-fixation">next module.</a></p>
+
  <h6>Short summary</h6>
-
<p><a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/rMFC">Here </a> you will find the results of the rMFC.</p>
+
<div class="element" style="margin:10px; padding:10px; width:150px; float:left;" >
 +
    <img src="https://static.igem.org/mediawiki/2014/3/35/Bielefeld_CeBiTec_2014-08-14_ecoliM1.jpg" width="150px" align="center">
 +
</div>
 +
     <p>In the first module we aim to identify possible mediators that are capable for electron transport. We want to
 +
      use electricity to chemically reduce these mediators and transport them into the cells. The process takes
 +
      place in a bioreactor called "reverse microbial fuel cell" (rMFC). One important requirement for a suitable  
 +
      mediator is that its reduction potential is high enough to restore reduction equivalents, like NAD(P)H  
 +
      (nicotinamide adenine dinucleotide (phosphate)). These reduction equivalents enter the respiratory chain where  
 +
      ATP (adenosine triphosphate) is produced which will be used in the <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Project/CO2-fixation">next module.</a>
 +
  <br><br>
 +
    <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/rMFC">Here </a> you will find the results of  
 +
          the rMFC.
 +
  </p>
   </div>
   </div>
</div>
</div>
 +
 +
<!--center>
 +
<div class="element" style="width:150px">
 +
    <img src="https://static.igem.org/mediawiki/2014/3/35/Bielefeld_CeBiTec_2014-08-14_ecoliM1.jpg" width="150px" align="center">
 +
</div>
 +
</center-->
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
<div class="element">
 +
  <div id="text">
 +
  <h6>References</h6>
 +
<ul>
 +
<li id="lovley2011">
 +
<div class="element" style="margin_10px 10px 10px 10px; padding:10px 10px 10px 10px">
 +
<div id="text">
 +
  Lovley, Derek R., 2011. Powering microbes with electricity: direct electron transfer from electrodes to microbes. In: <a href="http://onlinelibrary.wiley.com/doi/10.1111/j.1758-2229.2010.00211.x/abstract"
 +
target="_blank">Environmental Microbiology Reports 3 (1)</a>, pp. 27–35.
 +
</div>
 +
</div>
 +
</li> 
 +
 +
<li id="lovley2013">
 +
<div class="element" style="margin_10px 10px 10px 10px; padding:10px 10px 10px 10px">
 +
<div id="text">
 +
  Lovley, Derek R. & Nevin, Kelly P., 2013. Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. In: <a href="http://dx.doi.org/10.1016/j.copbio.2013.02.012"
 +
target="_blank">Current Opinion in Biotechnology</a>, 24, pp. 385-390.
 +
</div>
 +
</div>
 +
</li>
 +
 +
<li id="qiao2010">
 +
<div class="element" style="margin_10px 10px 10px 10px; padding:10px 10px 10px 10px">
 +
<div id="text">
 +
  Qiao, Yan; Bao, Shu-Juan; Li, Chang Ming (2010): Electrocatalysis in microbial fuel cells—from electrode material to direct electrochemistry. In: <a href="http://pubs.rsc.org/en/Content/ArticleLanding/2010/EE/b923503e#!divAbstract"
 +
target="_blank">Energy Environ. Sci.</a>, 3 (5), pp. 544.
 +
</div>
 +
</div>
 +
</li>
 +
 +
<li id="harnisch2012">
 +
<div class="element" style="margin_10px 10px 10px 10px; padding:10px 10px 10px 10px">
 +
<div id="text">
 +
  Harnisch, F. & Freguia, S., 2012. A Basic Tutorial on Cyclic Voltammetry for the investigation of Electroactive Microbial Biofilms.
 +
In: <a href="http://www.ncbi.nlm.nih.gov/pubmed/22279004"
 +
target="_blank">Chemistry – An Asian Journal</a>, 7 (3), pp. 466–475.
 +
</div>
 +
</div>
 +
</li>
 +
 +
</ul>
 +
</div>
 +
</div>
 +
 +
 +
 
 +
 
 +
 +
 +
</html>
</html>

Latest revision as of 09:27, 15 October 2014


rMFC

Short summary

In the first module we aim to identify possible mediators that are capable for electron transport. We want to use electricity to chemically reduce these mediators and transport them into the cells. The process takes place in a bioreactor called "reverse microbial fuel cell" (rMFC). One important requirement for a suitable mediator is that its reduction potential is high enough to restore reduction equivalents, like NAD(P)H (nicotinamide adenine dinucleotide (phosphate)). These reduction equivalents enter the respiratory chain where ATP (adenosine triphosphate) is produced which will be used in the next module.

Here you will find the results of the rMFC.

References
  • Lovley, Derek R., 2011. Powering microbes with electricity: direct electron transfer from electrodes to microbes. In: Environmental Microbiology Reports 3 (1), pp. 27–35.
  • Lovley, Derek R. & Nevin, Kelly P., 2013. Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. In: Current Opinion in Biotechnology, 24, pp. 385-390.
  • Qiao, Yan; Bao, Shu-Juan; Li, Chang Ming (2010): Electrocatalysis in microbial fuel cells—from electrode material to direct electrochemistry. In: Energy Environ. Sci., 3 (5), pp. 544.
  • Harnisch, F. & Freguia, S., 2012. A Basic Tutorial on Cyclic Voltammetry for the investigation of Electroactive Microbial Biofilms. In: Chemistry – An Asian Journal, 7 (3), pp. 466–475.