Team:Berlin/Project

From 2014.igem.org

(Difference between revisions)
Line 69: Line 69:
             <div class="col-xs-12">
             <div class="col-xs-12">
               <a name="top">&nbsp;</a>
               <a name="top">&nbsp;</a>
-
               As previous iGEM teams have shown, synthesizing fully functional magnetosomes in E. coli is highly difficult as more than 60 highly regulated genes are involved. As a more feasible alternative, we simply want to synthesize magnetic nanoparticles in E. coli in order to attract cells with strong magnetic fields.<br/>
+
               <a href="#description"> 1) Project description</a><br/>
-
               Therefore we want to use different strategies including manipulation of the iron homeostasis of E. coli, expression of different metal binding proteins such as ferritins and metallothioneins as well as a high-throughput growth medium optimization.
+
               <a href="#animation">2) Animation</a><br/>
-
               <br/><br/>
+
              <a href="#detail-description">3) detailed description of the different strategies</a><br/>
-
               Furthermore, we will work with other metal binding proteins such as metallothioneins and phytochelatin synthases in order to achieve nanoparticle synthesis.
+
               <a href="#flow-chart">4) Flow Chart with the strategies</a><br/>
-
               Once we have discovered the best way to magnetize E. coli bacteria, we will build and characterize suitable BioBricks that can be used by any research lab or iGEM team in the world in order to remote control the cellular movement.
+
               <a href="#results">5) Results</a><br/>
-
              <br/><br/><br/>
+
               <a href="#lab-summary">6) lab-summary</a><br/>
 +
              <a href="#notebook">7)Notebook (wiki.igem.berlin)</a><br/>
             </div>
             </div>
           </div>
           </div>
Line 83: Line 84:
<div id="subside-content">
<div id="subside-content">
    
    
-
  <!--<a name="top">&nbsp;</a>This is a test<br/>
 
-
  <a href="#description"> 1) Project description</a><br/>
 
-
  <a href="#animation">2) Animation</a><br/>
 
-
  <a href="#detail-description">3) detailed description of the different strategies</a><br/>
 
-
  <a href="#flow-chart">4) Flow Chart with the strategies</a><br/>
 
-
  <a href="#results">5) Results</a><br/>
 
-
  <a href="#lab-summary">6) lab-summary</a><br/>
 
-
  <a href="#notebook">7)Notebook (wiki.igem.berlin)</a><br/>-->
 
<!--- //////////////////ENTRY////////////////// -->
<!--- //////////////////ENTRY////////////////// -->
Line 114: Line 107:
           <img src="img/blog/Team_Berlin_bacteria.png" class="img-responsive" style="margin: 0 auto;"/>
           <img src="img/blog/Team_Berlin_bacteria.png" class="img-responsive" style="margin: 0 auto;"/>
     </div>-->
     </div>-->
-
     <div class="col-xs-12 col-sm-12 blog-text" style="margin-bottom:100px;">
+
     <div class="col-xs-12 col-sm-12 blog-text" style="margin-bottom:40px;">
       <p>     
       <p>     
               As previous iGEM teams have shown, synthesizing fully functional magnetosomes in E. coli is highly difficult as more than 60 highly regulated genes are involved. As a more feasible alternative, we simply want to synthesize magnetic nanoparticles in E. coli in order to attract cells with strong magnetic fields.<br/>
               As previous iGEM teams have shown, synthesizing fully functional magnetosomes in E. coli is highly difficult as more than 60 highly regulated genes are involved. As a more feasible alternative, we simply want to synthesize magnetic nanoparticles in E. coli in order to attract cells with strong magnetic fields.<br/>
Line 120: Line 113:
               <br/><br/>
               <br/><br/>
               Furthermore, we will work with other metal binding proteins such as metallothioneins and phytochelatin synthases in order to achieve nanoparticle synthesis.  
               Furthermore, we will work with other metal binding proteins such as metallothioneins and phytochelatin synthases in order to achieve nanoparticle synthesis.  
-
               Once we have discovered the best way to magnetize E. coli bacteria, we will build and characterize suitable BioBricks that can be used by any research lab or iGEM team in the world in order to remote control the cellular movement.
+
               Once we have discovered the best way to magnetize E. coli bacteria, we will build and characterize suitable BioBricks that can be used by any research lab or iGEM team in the world in order to remote control the cellular movement.</p>
-
              <br/></p>
+
     </div>
     </div>
   </div>     
   </div>     
Line 147: Line 139:
           <img src="img/blog/Team_Berlin_bacteria.png" class="img-responsive" style="margin: 0 auto;"/>
           <img src="img/blog/Team_Berlin_bacteria.png" class="img-responsive" style="margin: 0 auto;"/>
     </div>-->
     </div>-->
-
     <div class="col-xs-12 col-sm-12 blog-text" style="margin-bottom:100px;">
+
     <div class="col-xs-12 col-sm-12 blog-text" style="margin-bottom:40px;">
       <p>     
       <p>     
               Animation, jo!
               Animation, jo!

Revision as of 19:33, 13 October 2014

1

What is it all about?

As previous iGEM teams have shown, synthesizing fully functional magnetosomes in E. coli is highly difficult as more than 60 highly regulated genes are involved. As a more feasible alternative, we simply want to synthesize magnetic nanoparticles in E. coli in order to attract cells with strong magnetic fields.
Therefore we want to use different strategies including manipulation of the iron homeostasis of E. coli, expression of different metal binding proteins such as ferritins and metallothioneins as well as a high-throughput growth medium optimization.

Furthermore, we will work with other metal binding proteins such as metallothioneins and phytochelatin synthases in order to achieve nanoparticle synthesis. Once we have discovered the best way to magnetize E. coli bacteria, we will build and characterize suitable BioBricks that can be used by any research lab or iGEM team in the world in order to remote control the cellular movement.

2

Visualisation

Animation, jo!