Team:ETH Zurich/modeling/int

From 2014.igem.org

(Difference between revisions)
m (Characterization: KDBxb1)
m (Data)
Line 216: Line 216:
[[File:ETH Zurich Bonnet S4.jpg|center|800px|thumb|Transfer function from aTc to Bxb1. The experimental data corresponds to the points. They fitted this data with their own model. Supplementary figure S4 of Bonnet's paper ''Amplifying Genetic Logic Gates''<sup>[[Team:ETH_Zurich/project/references|[9]]]</sup>]]
[[File:ETH Zurich Bonnet S4.jpg|center|800px|thumb|Transfer function from aTc to Bxb1. The experimental data corresponds to the points. They fitted this data with their own model. Supplementary figure S4 of Bonnet's paper ''Amplifying Genetic Logic Gates''<sup>[[Team:ETH_Zurich/project/references|[9]]]</sup>]]
-
We do the same modeling steps, as for the [https://2014.igem.org/Team:ETH_Zurich/modeling/int#Characterization:_KSABxb1 previous characterization].Thus, we obtain the following set of differential equations:
+
We do the same modeling steps, as for the [https://2014.igem.org/Team:ETH_Zurich/modeling/int#Characterization:_KSABxb1 previous characterization].Thus, we obtain the following set of differential equations:$$\begin{align*}
-
 
+
-
$$\begin{align*}
+
\frac{d[Bxb1]}{dt} &= a_{}*(A_L + B_L * \frac{[aTc]^n}{[aTc]^n+K_L^n})- 2 k_{DBxb1}*[Bxb1]^2 + 2k_{-DBxb1}*[DBxb1] - d_{Bxb1}*[Bxb1] \\
\frac{d[Bxb1]}{dt} &= a_{}*(A_L + B_L * \frac{[aTc]^n}{[aTc]^n+K_L^n})- 2 k_{DBxb1}*[Bxb1]^2 + 2k_{-DBxb1}*[DBxb1] - d_{Bxb1}*[Bxb1] \\
\frac{d[DBxb1]}{dt} &= k_{DBxb1}*[Bxb1]^2 - k_{-DBxb1}*[DBxb1] - k_{SABxb1}*[DBxb1]*[SI_{Bxb1}] + k_{-SABxb1}*[SA_{Bxb1}] - d_{DBxb1}*[DBxb1] \\
\frac{d[DBxb1]}{dt} &= k_{DBxb1}*[Bxb1]^2 - k_{-DBxb1}*[DBxb1] - k_{SABxb1}*[DBxb1]*[SI_{Bxb1}] + k_{-SABxb1}*[SA_{Bxb1}] - d_{DBxb1}*[DBxb1] \\

Revision as of 15:00, 12 October 2014

iGEM ETH Zurich 2014