Team:UC Davis/Protein Engineering Design
From 2014.igem.org
(Difference between revisions)
Line 39: | Line 39: | ||
<div class="floatboxPotentiostat"> | <div class="floatboxPotentiostat"> | ||
- | |||
- | |||
The aldehyde dehydrogenase family of enzymes was selected for use with our electrochemical biosensor. This family of enzymes catalyzes the reaction of aliphatic, straight chain aldehydes and the oxidized form of beta-nicotinamide adenine dinucleotide (NAD+) to produce the corresponding carboxylic acid and the reduced form of beta-nicotinamide adenine dinucleotide (NADH). <br><br>SCHEME OF REACTION<br><br> | The aldehyde dehydrogenase family of enzymes was selected for use with our electrochemical biosensor. This family of enzymes catalyzes the reaction of aliphatic, straight chain aldehydes and the oxidized form of beta-nicotinamide adenine dinucleotide (NAD+) to produce the corresponding carboxylic acid and the reduced form of beta-nicotinamide adenine dinucleotide (NADH). <br><br>SCHEME OF REACTION<br><br> | ||
Line 52: | Line 50: | ||
This enzyme is BLAH | This enzyme is BLAH | ||
</ol> | </ol> | ||
- | |||
</div> | </div> | ||
</body> | </body> | ||
</html> | </html> |
Revision as of 10:01, 12 October 2014
Why Aldehyde Dehydrogenases?
The aldehyde dehydrogenase family of enzymes was selected for use with our electrochemical biosensor. This family of enzymes catalyzes the reaction of aliphatic, straight chain aldehydes and the oxidized form of beta-nicotinamide adenine dinucleotide (NAD+) to produce the corresponding carboxylic acid and the reduced form of beta-nicotinamide adenine dinucleotide (NADH).
SCHEME OF REACTION
The aldehyde dehydrogenase enzyme family was perfect our engineering and electrochemical applications:
SCHEME OF REACTION
The aldehyde dehydrogenase enzyme family was perfect our engineering and electrochemical applications:
- This enzyme uses NAD+ as a coenzyme and produces NADH in a 1:1 molar ratio with the amount of aldehyde catalyzed. The concentration of NADH can be readily measured with a spectrophotometer reading absorbance at 340nm, allowing us to easily measure the rate of the reaction catalyzed by an aldehyde dehydrogenase enzyme.
- The active site of aldehyde dehydrogenase is in the center of a long tunnel, where NAD+ enters from one side and the aldehyde substrate enters from the other side. This tunnel gives us a large amount of flexibility in engineering amino acid residues which will affect the catalytic efficiency of this enzyme toward certain aldehyde species.
- This enzyme is BLAH