Team:ETH Zurich/modeling/reactions

From 2014.igem.org

(Difference between revisions)
 
(2 intermediate revisions not shown)
Line 4: Line 4:
$$c = \pm\sqrt{a^2 + b^2}$$
$$c = \pm\sqrt{a^2 + b^2}$$
$$\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }$$
$$\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }$$
-
$$\displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)$$
+
$$\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)$$
-
$$f(x) = \int_{-\infty}^\infty
+
$$f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \,d\xi
-
    \hat f(\xi)\,e^{2 \pi i \xi x}
+
$$
-
    \,d\xi$$
+
$$\frac{d[Bxb1]}{dt}=-2 k_{dimBxb1}[Bxb1]^2+ 2 k_{-dimBxb1}[DBxb1]-d_{Bxb1}[Bxb1]$$
 +
$$\frac{d[DBxb1]}{dt}=-k_{DNABxb1}[DBxb1][SI_{Bxb1}]+k_{-DNABxb1}[SA_{Bxb1}]+k_{dimBxb1}[Bxb1]^2-k_{-dimBxb1}[DBxb1a]-d_{DBxb1}[DBxb1]$$
 +
 +
$$\frac{d[SA_{Bxb1}]}{dt}=k_{DNABxb1}[DBxb1][SI_{Bxb1}]-k_{-DNABxb1}[SA_{Bxb1}]$$
<html></article></html>
<html></article></html>
{{:Team:ETH Zurich/tpl/foot}}
{{:Team:ETH Zurich/tpl/foot}}

Latest revision as of 13:33, 11 October 2014

iGEM ETH Zurich 2014