Team:Hong Kong HKUST/wetlab/safety
From 2014.igem.org
Line 127: | Line 127: | ||
<td> | <td> | ||
This organism is our chassis. | This organism is our chassis. | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | |||
+ | </td> | ||
+ | <td> | ||
+ | |||
+ | </td> | ||
+ | <td> | ||
+ | |||
+ | </td> | ||
+ | <td> | ||
+ | |||
+ | </td> | ||
+ | <td> | ||
+ | comD from Streptococcus pneumoniae | ||
+ | </td> | ||
+ | <td> | ||
+ | part DNA that encodes a membrane-bound histidine-kinase receptor, ComD | ||
+ | </td> | ||
+ | <td> | ||
+ | "We plan to use PCR to isolate the part from genomic DNA of its parent organism. Also, we have ordered part DNA from Universite de Toulouse, France but have not obtained yet." | ||
+ | </td> | ||
+ | <td> | ||
+ | This part produces a membrane-bound histidine-kinase receptor, ComD which enables competence-stimulating peptide (CSP) to bind. This serves as a detector of Streptococcus pneumonia. | ||
+ | </td> | ||
+ | <td> | ||
+ | There are no known risk of diseases associated with this gene. | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | |||
+ | </td> | ||
+ | <td> | ||
+ | |||
+ | </td> | ||
+ | <td> | ||
+ | |||
+ | </td> | ||
+ | <td> | ||
+ | |||
+ | </td> | ||
+ | <td> | ||
+ | comE from Streptococcus pneumoniae | ||
+ | </td> | ||
+ | <td> | ||
+ | part DNA that encodes a ComE which gets phosphorylated once competence-stimulating peptide (CSP) binds to the receptor, ComD | ||
+ | </td> | ||
+ | <td> | ||
+ | We plan to use PCR to isolate the part from genomic DNA of its parent organism. In addition, We ordered the part DNA from the lab of Jean-Pierre Claverys and Patrice Poland in Toulouse. And we obtained three different types of comE; pKHS-comE WT, pKHS-comE (D58E) and pKHS-comE (R120S) | ||
+ | </td> | ||
+ | <td> | ||
+ | This part produces ComE which gets phosphorylated and this phosphorylated ComE activates the promoter for transcription of next gene. | ||
+ | </td> | ||
+ | <td> | ||
+ | There are no known risk of diseases associated with this gene. | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | |||
+ | </td> | ||
+ | <td> | ||
+ | |||
+ | </td> | ||
+ | <td> | ||
+ | |||
+ | </td> | ||
+ | <td> | ||
+ | |||
+ | </td> | ||
+ | <td> | ||
+ | comX from Streptococcus pneumoniae | ||
+ | </td> | ||
+ | <td> | ||
+ | part DNA that encodes an alternative sigma factor that directs the transcription of late competence (com) genes. | ||
+ | </td> | ||
+ | <td> | ||
+ | "We plan to use PCR to isolate the part from genomic DNA of its parent organism. Also, we have ordered part DNA from Universite de Toulouse, France but have not obtained yet." | ||
+ | </td> | ||
+ | <td> | ||
+ | This part produces a sigma factor that activates the promoter for transcription of late competence gene. | ||
+ | </td> | ||
+ | <td> | ||
+ | There are no known risk of diseases associated with this gene. | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | |||
+ | </td> | ||
+ | <td> | ||
+ | |||
+ | </td> | ||
+ | <td> | ||
+ | |||
+ | </td> | ||
+ | <td> | ||
+ | |||
+ | </td> | ||
+ | <td> | ||
+ | comW from Streptococcus pneumoniae | ||
+ | </td> | ||
+ | <td> | ||
+ | part DNA that encodes ComW which is involved in activation and stabilization of ComX. | ||
+ | </td> | ||
+ | <td> | ||
+ | We plan to use PCR to isolate the part from genomic DNA of its parent organism. Also, We have ordered part DNA from University of Illinois at Chicago and we are waiting for stock to come soon. | ||
+ | </td> | ||
+ | <td> | ||
+ | This part produces ComW which enhances activation and stabilization level of ComX. | ||
+ | </td> | ||
+ | <td> | ||
+ | There are no known risk of diseases associated with this gene. | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | |||
+ | </td> | ||
+ | <td> | ||
+ | |||
+ | </td> | ||
+ | <td> | ||
+ | |||
+ | </td> | ||
+ | <td> | ||
+ | |||
+ | </td> | ||
+ | <td> | ||
+ | BBa_J01008 | ||
+ | </td> | ||
+ | <td> | ||
+ | Artificial trans-activating RNA that can unlock cis-repressing RNA to activate translation process by exposing RBS to the ribosomes. | ||
+ | </td> | ||
+ | <td> | ||
+ | Oligo annealing | ||
+ | </td> | ||
+ | <td> | ||
+ | We will use it to characterize various lock and keys | ||
+ | </td> | ||
+ | <td> | ||
+ | Designed by Isaacs et al. | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | |||
+ | </td> | ||
+ | <td> | ||
+ | |||
+ | </td> | ||
+ | <td> | ||
+ | |||
+ | </td> | ||
+ | <td> | ||
+ | |||
+ | </td> | ||
+ | <td> | ||
+ | BBa_J01010 | ||
+ | </td> | ||
+ | <td> | ||
+ | Artificial cis-repressing RNA that represses translation by forming a loop structure to disperse the RBS. | ||
+ | </td> | ||
+ | <td> | ||
+ | Oligo annealing | ||
+ | </td> | ||
+ | <td> | ||
+ | We will use it to characterize various lock and keys | ||
+ | </td> | ||
+ | <td> | ||
+ | Designed by Isaacs et al. | ||
</td> | </td> | ||
</tr> | </tr> |
Revision as of 14:29, 10 October 2014
Safety
Biobrick SafetyThe team project will be using some non-virulent parts from a non-virulent strain of Streptococcus pneumoniae. To avoid any possible infection, we will not work on any form of live S. pneumoniae, but we will only work on its genomic DNA where we requested from another laboratory.We are also using lab strains E. coli routinely used in cloning like DH10B and DH5alpha which are safe to operate.
Environmental and General Public SafetyImproper disposal of biological waste might result in leak of biological materials to the environment, which might cause contamination, and improper disposal might also cause infection to those who process the wastes. However, there is little biological risk associated with our project in the first place, as described above because we are using innocuous bacteria strains that are unlikely to propagate in the environment. Despite being so, we autoclave all solid biological wastes before they are discarded as landfill garbage. We also treat liquid waste with 10% bleach to ensure that no biological waste could escape to the environment. Commonly used chemicals are mostly buffers and therefore pose little threat and risk to the environment. For chemicals that are hazardous, they could cause damage to other people if leaked out. We avoid these risks by collecting these chemical wastes and sending them to a centralized chemical waste disposal center within our university, where they will be processed by professionals in chemical waste treatment. The only living biological material that could escaped from the lab would be our E. coli host for DNA cloning and parts characterization, and there is little risk associated with their leakage because we are using DH10B as the major cloning host in which the strain is auxotrophic for leucine, and therefore rendering it unlikely to propagation outside laboratory environment. The strains of E. coli we use in lab, DH10B and DH5alpha, are also routinely used lab strains that are innocuous and non-virulent. Researcher SafetyTacking risk of organism, only non-virulent part was extracted from genomic DNA of non-virulent S. pneumoniae strain obtained from Professor Patrick Chiu Yat Woo at Hong Kong University. For chassis, only Biosafety Level 1 organisms (DH10B and DH5alpha) are dealt in the lab. All members are trained to deliver safe lab practices. In dealing with toxic chemicals such as DMSO, we wear lab coats and gloves and execute under fume hood. All experiments are conducted in a lab premise under authorized supervision. Risks with handling toxic chemicals, including DMSO, phenol and chloroform, which include chemical burns and damage to the health of team members in the long run, have been addressed. We wear lab coats and gloves whenever we handle these chemicals to minimize exposure to these chemicals, and we carry out bulk management of these chemicals inside a well ventilated fume hood. Risks associated with UV exposure during gel documentation and excision are also minimized by wearing face shields and gloves until the UV light is off. University Safety
Health, Safety & Environment Office (HSEO) is responsible for safety regulations at our institution,
The Hong Kong University of Science and Technology, HKUST.
We, team members, have not directly discussed our project with the director of HSEO but, our supervisors have.
After discussing the risks, we decided to operate only on the genomic DNA of a non-virulent strain of Streptococcus pneumoniae and
we are not handling the live bacteria itself.
Safety Training Courses
This year's HKUST team members have received safety training over the summer. Topics that we have learned about
in safety training are as following:
The link to the laboratory safety training requirements of our institution (The Hong Kong University of Science and Technology, HKUST) can be directed to: http://www.ab.ust.hk/hseo/training.htmReference
Chapter 9 Biological Safety. (2006, November 1). Retrieved October 3, 2014, from
|
Home |
Pneumosensor |
Riboregulator |
Human Practice |
Team |
WetLab |
Achievement |