Team:UESTC-China/Modeling3

From 2014.igem.org

(Difference between revisions)
 
(25 intermediate revisions not shown)
Line 92: Line 92:
#header{
#header{
height: 280px;
height: 280px;
-
background-image:url("https://static.igem.org/mediawiki/2014/7/76/Newbanner2.png");
+
background-image:url("https://static.igem.org/mediawiki/2014/4/49/New_New_banner.jpg");
background-position: top center;
background-position: top center;
background-repeat: no-repeat;
background-repeat: no-repeat;
Line 336: Line 336:
}
}
#top{
#top{
-
background-image:url('https://static.igem.org/mediawiki/2014/4/42/Top3.png');
+
background-image: url('https://static.igem.org/mediawiki/2014/8/89/Uestc_top2.png');
-
width: 53px;
+
width: 65px;
-
height: 84px;
+
height: 138px;
-
position: fixed;
+
position: fixed;
-
top: 80%;
+
top: 70%;
-
margin-left: 1220px;
+
margin-left: 1200px;
-
cursor: pointer;
+
cursor: pointer;
 +
z-index: 999;
 +
 
}
}
#logo{
#logo{
Line 409: Line 411:
-
#SensorEditingArea{position:absolute; left:0px; top:280px; height:4000px; width:1183px; background-color:#ffffff; padding:60px 0px 0px 30px;}
+
#SensorEditingArea{position:absolute; left:0px; top:280px; height:4300px; width:1183px; background-color:#ffffff; padding:60px 0px 0px 30px;}
.SensorEditingAreaClass p{position:relative;left:0px; width:1140px; font-size:23px; font-family: calibri, arial, helvetica, sans-serif;  text-align:justify;}
.SensorEditingAreaClass p{position:relative;left:0px; width:1140px; font-size:23px; font-family: calibri, arial, helvetica, sans-serif;  text-align:justify;}
Line 494: Line 496:
<a href="https://2014.igem.org/Team:UESTC-China/Lecture.html"><li>Lecture</li></a>
<a href="https://2014.igem.org/Team:UESTC-China/Lecture.html"><li>Lecture</li></a>
<a href="https://2014.igem.org/Team:UESTC-China/Communication.html"><li>Communication</li></a>
<a href="https://2014.igem.org/Team:UESTC-China/Communication.html"><li>Communication</li></a>
 +
<a href="https://2014.igem.org/Team:UESTC-China/Art"><li>Art</li></a>
</ul>
</ul>
</div>
</div>
Line 520: Line 523:
  <h1 style="color:#1b1b1b; position:relative; left:0px; padding:15 5px; font-size:35px; font-family: calibri, arial, helvetica, sans-serif; font-weight: bold;font-style: Italic; text-align:center; width:1140px;">Modeling of stoma</h1>
  <h1 style="color:#1b1b1b; position:relative; left:0px; padding:15 5px; font-size:35px; font-family: calibri, arial, helvetica, sans-serif; font-weight: bold;font-style: Italic; text-align:center; width:1140px;">Modeling of stoma</h1>
  <br/>
  <br/>
-
<p style="color:#1b1b1b;">While formaldehyde diffused into plant cells through the stoma, it suffered a series of obstruction or resistance of diffusion. Subsequently, a range of complex chemical reactions activated when the formaldehyde in cell diffused intercellular space. By analyzing the process, the molecule of formaldehyde diffused into cell through the stoma, we found the reason of the happening process is the mass transport caused by the uneven distribution of formaldehyde density. Therefore, the formaldehyde molecular diffusion velocity distribution meets the maxwell speed distribution function in normal temperature conditions. That means the number of formaldehyde encountered the unit leaf area within per unit time along the x-axis direction were obtained by the below equation.</p>
+
<p style="color:#1b1b1b;">While formaldehyde diffused into plant cells through the stoma, it suffered a series of obstruction or resistance of diffusion. Subsequently, a range of complex chemical reactions activated when the formaldehyde in cell diffused intercellular space. By analyzing the process, the molecule of formaldehyde diffused into cell through the stoma, we found the reason is the mass transport caused by the uneven distribution of formaldehyde density. Therefore, the formaldehyde molecular diffusion velocity distribution meets the maxwell speed distribution function in normal temperature conditions. That means the number of formaldehyde encountered the unit leaf area within per unit time along the x-axis direction were obtained by the below equation.</p>
<br/>
<br/>
<p style="color:#1b1b1b;"><img style="width:35%; margin-left:15px;" src="https://static.igem.org/mediawiki/2014/a/ae/Ms1.gif"><em style="position:absolute; right:250px; top: 60px;">(1)</em></p>
<p style="color:#1b1b1b;"><img style="width:35%; margin-left:15px;" src="https://static.igem.org/mediawiki/2014/a/ae/Ms1.gif"><em style="position:absolute; right:250px; top: 60px;">(1)</em></p>
<br/>
<br/>
-
<p style="color:#1b1b1b;">where the vx, vy and vz are the components of velocity of the gas molecules on the x-axis, y-axis and z-axis, respectively. <img style="width:9%;" src="https://static.igem.org/mediawiki/2014/f/fd/F.gif"> is the gas molecule maxwell speed distribution function. Ω is the number of gas molecule diffused into unit leaf areawithin per unit time. <i>S, t</i> is the leaf area and time, respectively. In equation <img style="width:9%;" src="https://static.igem.org/mediawiki/2014/f/fd/F.gif"> , the <i>n</i> stands for the number of formaldehyde in air, <i>m</i> for molecular weight of HCHO, <i>k</i> for boltzmann constant and <i>T</i> for temperature. From Equ.1, we got: </p>
+
<p style="color:#1b1b1b;">where the vx, vy and vz are the components of velocity of the gas molecules on the x-axis, y-axis and z-axis, respectively. <img style="width:9%;" src="https://static.igem.org/mediawiki/2014/f/fd/F.gif"> is the gas molecule maxwell speed distribution function. Ω is the number of gas molecule diffused into unit leaf areawithin per unit time. <i>S, t</i> is the leaf area and time, respectively. In equation <img style="width:9%;" src="https://static.igem.org/mediawiki/2014/f/fd/F.gif"> , the <i>n</i> stands for the number of formaldehyde in air, <i>m</i> for molecular weight of formaldehyde, <i>k</i> for boltzmann constant and <i>T</i> for temperature. From Equ.1, we got: </p>
<br/>
<br/>
<p style="color:#1b1b1b;"><img style="width:35%; margin-left:15px;" src="https://static.igem.org/mediawiki/2014/4/42/Ms2.gif"><em style="position:absolute; right:250px; top: 20px;">(2)</em></p>
<p style="color:#1b1b1b;"><img style="width:35%; margin-left:15px;" src="https://static.igem.org/mediawiki/2014/4/42/Ms2.gif"><em style="position:absolute; right:250px; top: 20px;">(2)</em></p>
Line 560: Line 563:
<p style="color:#1b1b1b;"><img style="width:45%; margin-left:15px;" src="https://static.igem.org/mediawiki/2014/b/b9/Ms10.gif"><em style="position:absolute; right:250px; top: 20px;">(10)</em></p>
<p style="color:#1b1b1b;"><img style="width:45%; margin-left:15px;" src="https://static.igem.org/mediawiki/2014/b/b9/Ms10.gif"><em style="position:absolute; right:250px; top: 20px;">(10)</em></p>
<br/>
<br/>
-
<p style="color:#1b1b1b;">where <i>C</i> stands for the concentration difference inside (<i>Ci</i>) and outside (<i>Ca</i>) stoma. Therefore, Equ.10 is the relationship between stomatal conductance and net absorption rate of plant leaf, concentration difference inside and outside stoma when the temperature and humidity remain unchanged. It indicated that plant leaf stomatal conductance and net HCHO absorption rate is proportional and inversely proportional to the concentration difference.</p>
+
<p style="color:#1b1b1b;">where <i>C</i> stands for the concentration difference inside (<i>Ci</i>) and outside (<i>Ca</i>) stoma. Therefore, Equ.10 is the relationship between stomatal conductance and net absorption rate of plant leaf, concentration difference inside and outside stoma when the temperature and humidity remain unchanged. It indicated that plant leaf stomatal conductance and net formaldehyde absorption rate is proportional and inversely proportional to the concentration difference.</p>
<br/>
<br/>
-
<h1 class="SectionTitles" style="width:500px;">Results</h1>
+
<h1 class="SectionTitles" style="width:1100px;">Results</h1>
<br/>
<br/>
-
<p style="color:#1b1b1b;">Since changing the parameter η, we plotted the situations and the diagram was shown in Fig.1.</p>
+
<p style="color:#1b1b1b;">Since changing the parameter <i>P</i>, we plotted the situations and the diagram was shown in Fig.1.</p>
<br/>
<br/>
<div align="center">
<div align="center">
-
<div><img style="width:75% ;" src="https://static.igem.org/mediawiki/2014/d/db/Fig-1.jpg"></div>
+
<div><img style="width:80% ;" src="https://static.igem.org/mediawiki/2014/a/af/Uestc_model3.jpg"></div>
-
<div><p style="position:relative; left:0px; padding:15 5px; font-size:20px; font-family: calibri, arial, helvetica, sans-serif; font-style: calibri; text-align:left; width:910px; color:#1b1b1b;">
+
<div><p style="position:relative; left:60px; padding:15 5px; font-size:20px; font-family: calibri, arial, helvetica, sans-serif; font-style: calibri; text-align:justify; width:1100px; color:#1b1b1b;">
-
<strong>Fig.1</strong> The relationship between stomatal conductance and the concentration of formaldehyde in air for differ η.
+
<strong>Fig.1</strong> The relationship between stomatal conductance and the concentration difference of air formaldehyde for differ <i>P</i>.
<br>
<br>
</p>
</p>
Line 576: Line 579:
</div>
</div>
<br/>
<br/>
-
<p style="color:#1b1b1b;">From the figure shown above, in the situation of same stomatal conductance, the concentration difference of formaldehyde for transgenic tobacco is less than that of wild type tobacco, which means the gene AtAHA2 can improve the absorption efficiency of formaldehyde. Therefore, we will clone the stomatal regulation gene, AtAHA2, to the expression vector in the future.</p>
+
<p style="color:#1b1b1b;">As all the information above concerned, we realized that since the absorption radio <i>η</i> maintains the constant and by enhancing the absorption radio of formaldehyde, the net absorption rate <i>P</i> would be significant increased. It has been proved (<i>Wang et al., 2014</i>) that, the gene <i>AtAHA2</i> which was transferred into plant cell, can significantly increase the stomata opening. From that, the absorption rate of formaldehyde would be increased. Therefore, the gene <i>AtAHA2</i> is a key component to intensify the net absorption rate <i>P</i>. From Fig.1, we also found that the larger P, the greater stomatal conductance <i>Gs</i>. Thus, we will clone the stomatal regulation gene, <i>AtAHA2</i>, to the expression vector and transfer into plant cell in the future.</p>
<br/><br/>
<br/><br/>
-
<h1 class="SectionTitles" style="width:500px;">Link to other modeling</h1>
+
<h1 class="SectionTitles" style="width:1100px;">Link to other modeling</h1>
-
<a href="https://2014.igem.org/Team:UESTC-China/Modeling1" class="button">Photosynthetic HCHO assimilation pathway (HPS/PHI)</a>
+
<a href="https://2014.igem.org/Team:UESTC-China/Modeling1" class="button">Photosynthetic formaldehyde assimilation pathway</a>
<br/>
<br/>
-
<a href="https://2014.igem.org/Team:UESTC-China/Modeling2" class="button">Folate-independent pathway (FALDH/FDH)</a>
+
<a href="https://2014.igem.org/Team:UESTC-China/Modeling2" class="button">Folate-independent pathway</a>
<br/>
<br/>
<br/>
<br/>
 +
<h1 class="SectionTitles" style="width:1100px;">Reference</h1>
 +
<p style="position:relative; left:0px; padding:15 5px; font-size:20px; font-family: calibri, arial, helvetica, sans-serif; font-style: Italic; text-align:justify; color:#1b1b1b;">Wang, Y., K. Noguchi, N. Ono, S. Inoue, I. Terashima and T. Kinoshita (2014). "Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth." <b>Proc Natl Acad Sci U S A</b> 111(1): 533-538.</p>
 +
   
   

Latest revision as of 02:06, 18 October 2014

UESTC-China