Team:UESTC-China/Modeling1

From 2014.igem.org

(Difference between revisions)
Line 521: Line 521:
  <h1 style="color:#1b1b1b; position:relative; left:0px; padding:15 5px; font-size:35px; font-family: calibri, arial, helvetica, sans-serif; font-weight: bold;font-style: Italic; text-align:center; width:1140px;">Photosynthetic HCHO assimilation pathway</h1>
  <h1 style="color:#1b1b1b; position:relative; left:0px; padding:15 5px; font-size:35px; font-family: calibri, arial, helvetica, sans-serif; font-weight: bold;font-style: Italic; text-align:center; width:1140px;">Photosynthetic HCHO assimilation pathway</h1>
  <br/>
  <br/>
-
  <h1 class="SectionTitles" style="text-align:left; width:500px;">Mathematical Principles</h1>
+
  <h1 class="SectionTitles" style=" width:500px;">Mathematical Principles</h1>
<br/>
<br/>
<p style="color:#1b1b1b;">Almost all chemical reactions obey the law of constant proportion:</p>
<p style="color:#1b1b1b;">Almost all chemical reactions obey the law of constant proportion:</p>
Line 549: Line 549:
-
  <h1 class="SectionTitles" style="text-align:left; width:500px;">Photosynthetic HCHO assimilation pathway</h1>
+
  <h1 class="SectionTitles" style=" width:500px;">Photosynthetic HCHO assimilation pathway</h1>
<br/>
<br/>
<p style="color:#1b1b1b;">The metabolism of photosynthetic HCHO assimilation was shown on Fig.1. Since the substrate (Ru5P) and product (F6P) of the sequential reactions catalyzed by HPS and PHI are intermediates of the Calvin cycle in plants, photosynthesis could provide sufficient substrates for the reactions catalyzed by HPS and PHI if the two enzymes were expressed in plant <i>(Song, Orita et al. 2010)</i>. It has been proved that over-expressing the HPS/PHI fusion protein can enhance the ability of the plants to absorb and assimilate exogenous HCHO <i>(Chen, Yurimoto et al. 2010)</i>. In this case, we utilize the mathematical principles described above to analyze the metabolism.</p>
<p style="color:#1b1b1b;">The metabolism of photosynthetic HCHO assimilation was shown on Fig.1. Since the substrate (Ru5P) and product (F6P) of the sequential reactions catalyzed by HPS and PHI are intermediates of the Calvin cycle in plants, photosynthesis could provide sufficient substrates for the reactions catalyzed by HPS and PHI if the two enzymes were expressed in plant <i>(Song, Orita et al. 2010)</i>. It has been proved that over-expressing the HPS/PHI fusion protein can enhance the ability of the plants to absorb and assimilate exogenous HCHO <i>(Chen, Yurimoto et al. 2010)</i>. In this case, we utilize the mathematical principles described above to analyze the metabolism.</p>
Line 605: Line 605:
[C0]: the initial concentration of formaldehyde.
[C0]: the initial concentration of formaldehyde.
<br/><br/></p>
<br/><br/></p>
-
<h1 class="SectionTitles" style="text-align:left; width:500px;">Results</h1>
+
<h1 class="SectionTitles" style="width:500px;">Results</h1>
<br/>
<br/>
<p style="color:#1b1b1b;">By changing the value of those parameters (<i>k1, k2</i> … ), we obtained the relationship (Fig.3) between the concentration of different components (Ru5P, F6P and HCHO) versus the time. </p>
<p style="color:#1b1b1b;">By changing the value of those parameters (<i>k1, k2</i> … ), we obtained the relationship (Fig.3) between the concentration of different components (Ru5P, F6P and HCHO) versus the time. </p>
Line 621: Line 621:
<p style="color:#1b1b1b;">From Fig.3, we found that the components tend to be the steady state when time goes by. Means that when the formaldehyde into the plant cell, the original steady state would be broken, but after a period of time, the cells will restore homeostasis which indicated that the indoor formaldehyde has been absorbed by the plant. For figure 3B, in the initial stage, formaldehydewill continue to grow due to the delayed effects of reaction; subsequently,the concentration of formaldehyde begins to decrease with time and finally tends to be the steady state.</p>
<p style="color:#1b1b1b;">From Fig.3, we found that the components tend to be the steady state when time goes by. Means that when the formaldehyde into the plant cell, the original steady state would be broken, but after a period of time, the cells will restore homeostasis which indicated that the indoor formaldehyde has been absorbed by the plant. For figure 3B, in the initial stage, formaldehydewill continue to grow due to the delayed effects of reaction; subsequently,the concentration of formaldehyde begins to decrease with time and finally tends to be the steady state.</p>
<br/>
<br/>
-
<h1 class="SectionTitles" style="text-align:left; width:500px;">Link to other modeling</h1>
+
<h1 class="SectionTitles" style=" width:500px;">Link to other modeling</h1>
<a href="https://2014.igem.org/Team:UESTC-China/Modeling2" class="button">Folate-independent pathway (FALDH/FDH)</a>
<a href="https://2014.igem.org/Team:UESTC-China/Modeling2" class="button">Folate-independent pathway (FALDH/FDH)</a>
<br/>
<br/>
Line 628: Line 628:
<br/>
<br/>
<br/>
<br/>
-
<h1 class="SectionTitles" style="text-align:left; width:500px;">Reference</h1>
+
<h1 class="SectionTitles" style="width:500px;">Reference</h1>
<p style="position:relative; left:0px; padding:15 5px; font-size:20px; font-family: calibri, arial, helvetica, sans-serif; font-style: Italic; text-align:left; color:#1b1b1b;">Chen, L. M., H. Yurimoto, K. Z. Li, I. Orita, M. Akita, N. Kato, Y. Sakai and K. Izui (2010). "Assimilation of formaldehyde in transgenic plants due to the introduction of the bacterial ribulose monophosphate pathway genes." <b>Biosci Biotechnol Biochem</b> 74(3): 627-635.</p>
<p style="position:relative; left:0px; padding:15 5px; font-size:20px; font-family: calibri, arial, helvetica, sans-serif; font-style: Italic; text-align:left; color:#1b1b1b;">Chen, L. M., H. Yurimoto, K. Z. Li, I. Orita, M. Akita, N. Kato, Y. Sakai and K. Izui (2010). "Assimilation of formaldehyde in transgenic plants due to the introduction of the bacterial ribulose monophosphate pathway genes." <b>Biosci Biotechnol Biochem</b> 74(3): 627-635.</p>
<p style="position:relative; left:0px; padding:15 5px; font-size:20px; font-family: calibri, arial, helvetica, sans-serif; font-style: Italic; text-align:left; color:#1b1b1b;">Song, Z., I. Orita, F. Yin, H. Yurimoto, N. Kato, Y. Sakai, K. Izui, K. Li and L. Chen (2010). "Overexpression of an HPS/PHI fusion enzyme from Mycobacterium gastri in chloroplasts of geranium enhances its ability to assimilate and phytoremediate formaldehyde." <b>Biotechnol Lett</b> 32(10): 1541-1548.</p>
<p style="position:relative; left:0px; padding:15 5px; font-size:20px; font-family: calibri, arial, helvetica, sans-serif; font-style: Italic; text-align:left; color:#1b1b1b;">Song, Z., I. Orita, F. Yin, H. Yurimoto, N. Kato, Y. Sakai, K. Izui, K. Li and L. Chen (2010). "Overexpression of an HPS/PHI fusion enzyme from Mycobacterium gastri in chloroplasts of geranium enhances its ability to assimilate and phytoremediate formaldehyde." <b>Biotechnol Lett</b> 32(10): 1541-1548.</p>

Revision as of 09:31, 14 October 2014

UESTC-China