Team:UCL/Project/Xenobiology

From 2014.igem.org

(Difference between revisions)
Line 17: Line 17:
      
      
<p>
<p>
-
<i>“Any technological advance can be dangerous. Fire was dangerous from the start, and so (even more so) was speech - and both are still dangerous to this day - but human beings would not be human without them.” - Isaac Asimov</i></p>
+
<i>“Any technological advance can be dangerous. Fire was dangerous from the start, and so (even more so) was speech - and both are still dangerous to this day - but human beings would not be human without them.” - Isaac Asimov</i></p><br/>
<p>
<p>

Revision as of 15:04, 16 October 2014

Goodbye Azodye UCL iGEM 2014

About Our Project

The ultimate safety tool

“Any technological advance can be dangerous. Fire was dangerous from the start, and so (even more so) was speech - and both are still dangerous to this day - but human beings would not be human without them.” - Isaac Asimov


The wide use of genetically modified organisms causes concerns on how they will interact in the natural environment. In particular could the genetically modified microbes escape our constrains, and outcompete the organisms found in the natural ecosystem? Could the DNA we inserted into a specific bacteria be transmitted, with unknown spread of information?

Xenobiology is the part of synthetic biology that mostly implements the term "synthetic" by creating organisms that are unable to survive in the natural environment and necessitate an artificial intervention from man to exist. It aims to create a synthetic "man-made" version of Biology that respects the definition of life, but is based on entirely different mechanisms to function. The biochemistry of a xeno-organism uses different materials from the ones explored by Biology and is therefore incompatible with other forms of life. This allows a much higher level of control: a xeno-organism will not be able to find the xenocompounds in the natural environment, and will not be able to use bacterial communication systems. We explored this possibility with the longer term vision of creating an X. coli which lives only because of azo dyes. An alien form of life, different from the one we know, will merge synthetic chemistry with synthetic biology - allowing the remediate the damage that the first one caused and making the remediating agent dependent on the toxic compounds. This system would be completely incompatible and invisible to regular biology, now we can ask: is alien life safe enough?

Reference:

  1. Wright, O., Stan, G.-B., and Ellis, T. (2013). Building-in biosafety for synthetic biology. (Review) Microbiology, 159, 1221-1235. http://www.ncbi.nlm.nih.gov/pubmed/23519158
  2. Okada, K., Minehira, M., and Zhu, X. (1997). The ispB gene encoding octaprenyl diphosphate synthase is essential for growth of Escherichia coli. Journal of Bacteriology, 179, 3058–3060. http://www.ncbi.nlm.nih.gov/pubmed/9139929
  3. Søballe, B. , Poole, K. R. (1999). Microbial ubiquinones: multiple roles in respiration, gene regulation and oxidative stress management. (Review) Microbiology, 145, 1817-1830. http://www.ncbi.nlm.nih.gov/pubmed/10463148
  4. Schmidt, M (2010). Xenobiology: A new form of life as the ultimate biosafety tool Bioessays, 32, 322-331. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909387/
  5. Malyshev, D.A., Dhami, K., Lavergne, T. et al. (2014). A semi-synthetic organism with an expanded genetic alphabet Nature, 509, 385-388. http://www.nature.com/nature/journal/v509/n7500/full/nature13314.html

Contact Us

University College London
Gower Street - London
WC1E 6BT
Biochemical Engineering Department
Phone: +44 (0)20 7679 2000
Email: ucligem2014@gmail.com

Follow Us